Office Applications and Entertainment, Latin Squares | ||
![]() |
Index | About the Author |
5.5 Self Orthogonal Latin Squares (5 x 5)
A Self Orthogonal Latin Square A is a Latin Square that is Orthogonal to its Transposed T(A).
The transposed square T(A) can be obtained by exchanging the rows and columns of A.
Self Orthogonal Latin Diagonal Squares can be generated with routine SelfOrth5.
It appeared that 480 of tht 960 order 5 Latin Diagonal Squares found in Section 5.1 are Self Orthogonal.
Each Self Orthogonal Latin Square has eight orientations which can be reached by means of rotation and/or reflection.
Each Self Orthogonal Latin Diagonal Square corresponds with 5! = 120 Self Orthogonal Latin Diagonal Squares,
which can be obtained by permutation of the integers {ai, i = 1 ... 5}.
The Self Orthogonal Latin Squares {A1, A2, A3, A4} shown below, can be considered as a Base for the whole collection of 480 Self Orthogonal Latin Squares. |
A1
0 4 3 2 1 2 1 0 4 3 4 3 2 1 0 1 0 4 3 2 3 2 1 0 4 A2 = T(A1)
0 2 4 1 3 4 1 3 0 2 3 0 2 4 1 2 4 1 3 0 1 3 0 2 4 A3
0 3 4 2 1 2 1 3 4 0 1 4 2 0 3 4 0 1 3 2 3 2 0 1 4 A4 = T(A3)
0 2 1 4 3 3 1 4 0 2 4 3 2 1 0 2 4 0 3 1 1 0 3 2 4
It can be noticed that A2 is the transposed of A1 and
A4 is the transposed of A3.
In addition to the transformations and permutations described above, each Self Orthogonal Latin Diagonal Square A corresponds with 4 transformations, as described below.
The resulting number of transformations, excluding the 180o rotated aspects, is 4/2 * 2 = 4, which are shown below: |
Base
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0 Tr1
0 3 2 1 4 1 4 3 2 0 4 2 1 0 3 2 0 4 3 1 3 1 0 4 2 Sw12(Base)
4 0 3 1 2 1 2 0 3 4 2 3 1 4 0 3 4 2 0 1 0 1 4 2 3 Sw12(Tr1)
4 1 3 0 2 3 0 2 4 1 2 4 1 3 0 1 3 0 2 4 0 2 4 1 3
Each transformation shown has again eight orientations which can be reached by means of rotation and/or reflection.
Self Orthogonal Pan Magic Latin Diagonal Squares can be generated with routine
SelfOrth5.
A construction example of a Pan Magic Square M = A + 5 * T(A) + [1] is shown below:
It appeared that all 240 order 5 Pan Magic Latin Diagonal Squares found in Section 5.2.2 are Self Orthogonal
(ref. Attachment 5.5.2).
5.5.3 Associated Magic Squares
Self Orthogonal Associated Latin Diagonal Squares can be generated with routine
SelfOrth5.
A construction example of an Associated Magic Square M = A + 5 * T(A) + [1] is shown below:
It appeared that 32 of the 64 order 5 Associated Latin Diagonal Squares found in Section 5.2.4 are Self Orthogonal
(ref. Attachment 5.5.3).
Self Orthogonal Ultra Latin Diagonal Squares can be generated with routine
SelfOrth5.
A construction example of an Ultra Magic Square M = A + 5 * T(A) + [1] is shown below:
It appeared that all 16 order 5 Ultra Latin Diagonal Squares found in Section 5.2.3 are Self Orthogonal
(ref. Attachment 5.5.4).
5.6 Composed Latin Squares (20 x 20)
Order 5 Self Orthogonal Latin Diagonal Squares can be used to construct order 20 Self Orthogonal Composed Latin Diagonal Squares.
5.6.1 Composed Associated Squares
Order 5 Self Orthogonal Associated Latin Sub Squares can be constructed based on the sub series:
|
Sqrs5
19 14 4 9 4 9 19 14 9 4 14 19 14 19 9 4 A
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
The order 4 Self Orthogonal Associated Latin Square left is based on the
first elemnets of the Sub Squares
and has been used as a guideline for the construction
shown above.
5.6.2 Composed Pan Magic Squares (1)
Order 20 Self Orthogonal Composed Pan Magic and Complete Latin Diagonal Squares can be constructed based on Order 20 Self Orthogonal Composed Associated Latin Diagonal Squares as illustrated below (Euler): |
Sqrs5
19 14 4 9 4 9 19 14 9 4 14 19 14 19 9 4 A
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
6 7 5 8 9 9 5 8 6 7 8 9 7 5 6 7 8 6 9 5 5 6 9 7 8
1 2 0 3 4 4 0 3 1 2 3 4 2 0 1 2 3 1 4 0 0 1 4 2 3
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
11 12 10 13 14 14 10 13 11 12 13 14 12 10 11 12 13 11 14 10 10 11 14 12 13
16 17 15 18 19 19 15 18 16 17 18 19 17 15 16 17 18 16 19 15 15 16 19 17 18
13 12 14 11 10 10 14 11 13 12 11 10 12 14 13 12 11 13 10 14 14 13 10 12 11
18 17 19 16 15 15 19 16 18 17 16 15 17 19 18 17 16 18 15 19 19 18 15 17 16
0 1 4 2 3 2 3 1 4 0 3 4 2 0 1 4 0 3 1 2 1 2 0 3 4
5 6 9 7 8 7 8 6 9 5 8 9 7 5 6 9 5 8 6 7 6 7 5 8 9
8 7 9 6 5 5 9 6 8 7 6 5 7 9 8 7 6 8 5 9 9 8 5 7 6
3 2 4 1 0 0 4 1 3 2 1 0 2 4 3 2 1 3 0 4 4 3 0 2 1
15 16 19 17 18 17 18 16 19 15 18 19 17 15 16 19 15 18 16 17 16 17 15 18 19
10 11 14 12 13 12 13 11 14 10 13 14 12 10 11 14 10 13 11 12 11 12 10 13 14
The order 4 Self Orthogonal Associated Latin Square left is based on the first elemnets of the Sub Squares (before transformation)
and has been used as a guideline for the construction
shown above.
5.6.3 Composed Pan Magic Squares (2)
Order 5 Self Orthogonal Pan Magic Latin Sub Squares can be constructed based on the sub series:
|
Sqrs5
7 2 17 12 12 17 2 7 2 7 12 17 17 12 7 2 A
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
The order 4 Self Orthogonal Pan Magic Latin Square left is based on
first elemnets of the Sub Squares
and has been used as a guideline for the construction
shown above.
5.7 Composed Latin Squares (24 x 24)
A combination of order 4 and 5 (Inlaid) Self Orthogonal Latin Diagonal Squares can be used to construct order 24 Self Orthogonal Composed Latin Diagonal Squares. |
Sqrs4
9 5 1 21 17 1 21 17 9 5 17 9 5 1 21 5 1 21 17 9 21 17 9 5 1 A
9 8 12 11 5 4 13 7 10 6 1 0 14 3 2 22 21 20 15 23 17 16 19 18 12 11 10 9 13 7 6 5 8 4 14 3 2 1 0 20 15 23 22 21 18 19 16 17 10 9 8 12 6 5 4 13 11 7 2 1 0 14 3 23 22 21 20 15 16 17 18 19 8 12 11 10 4 13 7 6 9 5 0 14 3 2 1 21 20 15 23 22 19 18 17 16 1 0 13 3 21 20 14 23 6 2 17 16 15 19 22 18 9 8 11 10 5 4 12 7 13 3 2 1 14 23 22 21 4 0 15 19 18 17 20 16 10 11 8 9 12 7 6 5 2 1 0 13 22 21 20 14 7 3 18 17 16 15 23 19 8 9 10 11 6 5 4 12 0 13 3 2 20 14 23 22 5 1 16 15 19 18 21 17 11 10 9 8 4 12 7 6 11 10 9 8 18 17 16 19 12 14 21 20 23 22 15 13 1 0 3 2 7 6 5 4 3 2 1 0 7 6 5 4 15 13 9 8 11 10 12 14 17 16 19 18 21 20 23 22 17 16 14 19 9 8 15 11 0 20 5 4 7 6 18 10 3 2 12 1 23 22 13 21 14 19 18 17 15 11 10 9 2 22 6 7 4 5 16 8 12 1 0 3 13 21 20 23 18 17 16 14 10 9 8 15 1 21 4 5 6 7 19 11 0 3 2 12 20 23 22 13 16 14 19 18 8 15 11 10 3 23 7 6 5 4 17 9 2 12 1 0 22 13 21 20 19 18 17 16 23 22 21 20 13 15 3 2 1 0 14 12 5 4 7 6 9 8 11 10 6 5 4 7 11 10 9 8 14 12 19 18 17 16 13 15 23 22 21 20 1 0 3 2 4 7 15 6 1 0 3 2 20 16 23 22 12 21 8 5 19 18 13 17 11 10 14 9 15 6 5 4 2 3 0 1 22 18 12 21 20 23 10 7 13 17 16 19 14 9 8 11 5 4 7 15 0 1 2 3 21 17 20 23 22 12 9 6 16 19 18 13 8 11 10 14 7 15 6 5 3 2 1 0 23 19 22 12 21 20 11 4 18 13 17 16 10 14 9 8 21 20 23 22 16 19 12 18 17 8 11 10 13 9 4 0 7 6 14 5 3 2 15 1 22 23 20 21 12 18 17 16 19 10 13 9 8 11 6 2 14 5 4 7 15 1 0 3 20 21 22 23 17 16 19 12 18 9 8 11 10 13 5 1 4 7 6 14 0 3 2 15 23 22 21 20 19 12 18 17 16 11 10 13 9 8 7 3 6 14 5 4 2 15 1 0 Aux4
12 14 15 13 15 13 12 14 13 15 14 12 14 12 13 15
The order 5 Self orthogonal Latin Diagonal Square left/top (Sqrs4) is based on
the first elemnets of the original order 4 Sub Squares,
and has been used as a guideline for the construction.
5.8 Composed Latin Squares (25 x 25)
Order 5 Self Orthogonal Latin Diagonal Squares can be used to construct order 25 Self Orthogonal Composed Latin Diagonal Squares.
5.8.1 Composed Associated Squares
Order 5 Self Orthogonal Associated Latin Sub Squares can be constructed based on the sub series:
|
Sqrs5
24 19 4 14 9 14 9 19 4 24 9 4 14 24 19 4 24 9 19 14 19 14 24 9 4 A
24 23 20 22 21 22 21 23 20 24 21 20 22 24 23 20 24 21 23 22 23 22 24 21 20
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
24 23 20 22 21 22 21 23 20 24 21 20 22 24 23 20 24 21 23 22 23 22 24 21 20
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
24 23 20 22 21 22 21 23 20 24 21 20 22 24 23 20 24 21 23 22 23 22 24 21 20
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
24 23 20 22 21 22 21 23 20 24 21 20 22 24 23 20 24 21 23 22 23 22 24 21 20
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
19 18 15 17 16 17 16 18 15 19 16 15 17 19 18 15 19 16 18 17 18 17 19 16 15
14 13 10 12 11 12 11 13 10 14 11 10 12 14 13 10 14 11 13 12 13 12 14 11 10
24 23 20 22 21 22 21 23 20 24 21 20 22 24 23 20 24 21 23 22 23 22 24 21 20
9 8 5 7 6 7 6 8 5 9 6 5 7 9 8 5 9 6 8 7 8 7 9 6 5
4 3 0 2 1 2 1 3 0 4 1 0 2 4 3 0 4 1 3 2 3 2 4 1 0
The order 5 Self Orthogonal Latin Square left is based on
first elemnets of the Sub Squares
and has been used as a guideline for the construction
shown above.
5.8.2 Composed Pan Magic Squares
Order 5 Self Orthogonal Pan Magic Latin Sub Squares can be constructed based on the sub series:
|
Sqrs5
12 7 2 22 17 2 22 17 12 7 17 12 7 2 22 7 2 22 17 12 22 17 12 7 2 A
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
22 21 20 24 23 20 24 23 22 21 23 22 21 20 24 21 20 24 23 22 24 23 22 21 20
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
22 21 20 24 23 20 24 23 22 21 23 22 21 20 24 21 20 24 23 22 24 23 22 21 20
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
22 21 20 24 23 20 24 23 22 21 23 22 21 20 24 21 20 24 23 22 24 23 22 21 20
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
22 21 20 24 23 20 24 23 22 21 23 22 21 20 24 21 20 24 23 22 24 23 22 21 20
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
22 21 20 24 23 20 24 23 22 21 23 22 21 20 24 21 20 24 23 22 24 23 22 21 20
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15
12 11 10 14 13 10 14 13 12 11 13 12 11 10 14 11 10 14 13 12 14 13 12 11 10
7 6 5 9 8 5 9 8 7 6 8 7 6 5 9 6 5 9 8 7 9 8 7 6 5
2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0
The order 5 Self Orthogonal Latin Square left is based on
first elemnets of the Sub Squares
and has been used as a guideline for the construction
shown above.
5.9.1 Composed Semi Latin Squares
The construction of Self Orthogonal Composed Semi-Latin (Diagonal) Squares based on
Order 5 Self orthogonal Latin Diagonal Squares has been deducted and discussed in
Section 15.2.7.
The obtained results regarding the order 5 Latin - and related Magic Squares, as deducted and discussed in previous sections, are summarized in following table:
Comparable methods as described above, can be applied to construct higher order Self Orthogonal Latin Squares,
of which a few examples will be described in following sections.
|
![]() |
Index | About the Author |