Office Applications and Entertainment, Latin Squares |
||
![]() |
Attachment 5.7.1 | About the Author |
Construction of order 24 Self Orthogonal Composed Latin Diagonal Squares
Construct an order 20 Self Orthogonal Composed Latin Diagonal Square.
|
Step 1
9 8 11 10 10 11 8 9 8 9 10 11 11 10 9 8
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0
21 20 23 22 22 23 20 21 20 21 22 23 23 22 21 20
17 16 19 18 18 19 16 17 16 17 18 19 19 18 17 16
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0
21 20 23 22 22 23 20 21 20 21 22 23 23 22 21 20
17 16 19 18 18 19 16 17 16 17 18 19 19 18 17 16
9 8 11 10 10 11 8 9 8 9 10 11 11 10 9 8
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
17 16 19 18 18 19 16 17 16 17 18 19 19 18 17 16
9 8 11 10 10 11 8 9 8 9 10 11 11 10 9 8
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0
21 20 23 22 22 23 20 21 20 21 22 23 23 22 21 20
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0
21 20 23 22 22 23 20 21 20 21 22 23 23 22 21 20
17 16 19 18 18 19 16 17 16 17 18 19 19 18 17 16
9 8 11 10 10 11 8 9 8 9 10 11 11 10 9 8
21 20 23 22 22 23 20 21 20 21 22 23 23 22 21 20
17 16 19 18 18 19 16 17 16 17 18 19 19 18 17 16
9 8 11 10 10 11 8 9 8 9 10 11 11 10 9 8
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0 Sqrs4
9 5 1 21 17 1 21 17 9 5 17 9 5 1 21 5 1 21 17 9 21 17 9 5 1 Aux4
12 14 15 13 15 13 12 14 13 15 14 12 14 12 13 15
The order 5 Self orthogonal Latin Diagonal Square right/top (Sqrs4) is based on the first elemnets of the Sub Squares,
and has been used as a guideline for the construction.
Step 2 The Intermediate Square has to be completed and transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of twenty order 5 Auxiliary Latin Diagonal Squares: |
12
9 8 12 11 10 12 11 10 9 8 10 9 8 12 11 8 12 11 10 9 11 10 9 8 12 13
5 4 13 7 6 13 7 6 5 4 6 5 4 13 7 4 13 7 6 5 7 6 5 4 13 14
1 0 14 3 2 14 3 2 1 0 2 1 0 14 3 0 14 3 2 1 3 2 1 0 14 15
22 21 20 15 23 20 15 23 22 21 23 22 21 20 15 21 20 15 23 22 15 23 22 21 20 13
1 0 13 3 2 13 3 2 1 0 2 1 0 13 3 0 13 3 2 1 3 2 1 0 13 14
21 20 14 23 22 14 23 22 21 20 22 21 20 14 23 20 14 23 22 21 23 22 21 20 14 15
17 16 15 19 18 15 19 18 17 16 18 17 16 15 19 16 15 19 18 17 19 18 17 16 15 12
6 5 4 12 7 4 12 7 6 5 7 6 5 4 12 5 4 12 7 6 12 7 6 5 4 14
17 16 14 19 18 14 19 18 17 16 18 17 16 14 19 16 14 19 18 17 19 18 17 16 14 15
9 8 15 11 10 15 11 10 9 8 10 9 8 15 11 8 15 11 10 9 11 10 9 8 15 12
12 1 0 3 2 0 3 2 12 1 2 12 1 0 3 1 0 3 2 12 3 2 12 1 0 13
13 21 20 23 22 20 23 22 13 21 22 13 21 20 23 21 20 23 22 13 23 22 13 21 20 15
6 5 4 7 15 4 7 15 6 5 15 6 5 4 7 5 4 7 15 6 7 15 6 5 4 12
12 21 20 23 22 20 23 22 12 21 22 12 21 20 23 21 20 23 22 12 23 22 12 21 20 13
13 17 16 19 18 16 19 18 13 17 18 13 17 16 19 17 16 19 18 13 19 18 13 17 16 14
14 9 8 11 10 8 11 10 14 9 10 14 9 8 11 9 8 11 10 14 11 10 14 9 8 12
18 17 16 19 12 16 19 12 18 17 12 18 17 16 19 17 16 19 12 18 19 12 18 17 16 13
13 9 8 11 10 8 11 10 13 9 10 13 9 8 11 9 8 11 10 13 11 10 13 9 8 14
14 5 4 7 6 4 7 6 14 5 6 14 5 4 7 5 4 7 6 14 7 6 14 5 4 15
15 1 0 3 2 0 3 2 15 1 2 15 1 0 3 1 0 3 2 15 3 2 15 1 0
The twenty Auxiliary Squares are based on the five sub series defined above and the series {12, 13, 14, 15}.
Step 3
The order 24 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for
the construction of an order 24 Composed Simple Magic Square.
|
![]() |
About the Author |