Office Applications and Entertainment, Magic Squares | ||
|
|
Index | About the Author |
|
8.6 Further Analysis, Miscellaneous Properties
In previous sections the properties Associated (Center Symmetric) and Complete have been introduced and applied several times.
In Section 8.6.2 and Section 8.6.3 below, the properties described above will be applied on Pan Magic Squares.
For Associated Pan Magic Squares, following equations should be added to the equations defining a Pan Magic Square:
which results - after deduction - in following linear equations describing Associated Pan Magic or Ultra Magic Squares:
a(57) = s1 - a(58) - a(59) - a(60) - a(61) - a(62) - a(63) - a(64)
a(49) = s1 - a(50) - a(51) - a(52) - a(53) - a(54) - a(55) - a(56)
a(45) = 2*s1 - a(46) - a(47) - a(48) + a(50) + a(51) - a(53) - 2*a(54) - 2*a(55) - a(56) + a(58) + a(59) +
- 2*a(61) - 3*a(62) - 3*a(63) - 2*a(64)
a(43) = s1 - a(44) - a(47) - a(48) - a(51) - a(52) - a(55) - a(56)
a(42) = a(44) - a(45) + a(47) - a(49) - a(50) + a(55) + a(56) - a(58) - a(59) + a(62) + a(63)
a(41) = s1 - a(42) - a(45) - a(46) - a(49) - a(50) - a(53) - a(54)
a(40) = 2*s1 - a(47) - 2*a(48) - a(54) - 2*a(55) - 2*a(56) - a(61) - 2*a(62) - 2*a(63) - 2*a(64)
a(39) = a(44) - a(49) + a(62)
a(38) = - a(44) - a(46) - a(47) + a(49) + a(50) + a(51) + a(58) + a(59) - a(62)
a(37) = -2*s1 + a(46) + 2*a(47) + 2*a(48) - 2*a(50) - 2*a(51) + 2*a(54) + 3*a(55) + 2*a(56) - 2*a(58) +
- 2*a(59) + 2*a(61) + 4*a(62) + 4*a(63) + 3*a(64)
a(36) = s1 - a(44) + a(47) + a(48) - a(50) - a(51) - a(52) + a(55) + a(56) - a(57) - 2*a(58) - 2*a(59) - 2*a(60)
a(35) = a(48) - a(53) + a(58)
a(34) = a(45) - a(56) + a(59)
a(33) = - s1 + a(44) + a(46) - a(48) + a(50) + a(51) + a(52) + 2*a(53) + a(54) + a(56) + a(60)
The solutions can be obtained by guessing a(64) ... a(58), a(56) ... a(50), a(48) ... a(46), a(44) and filling out these guesses in the equations shown above.
The combination of the properties Pan Magic, Compact and Complete (Most Perfect Magic Squares) has been mentioned before,
amongst others as a consequence of the construction method discussed in Section 8.1.2.
which results - after deduction - in following linear equations describing Complete Pan Magic Squares:
a(57) = s1 - a(58) - a(59) - a(60) - a(61) - a(62) - a(63) - a(64)
a(49) = s1 - a(50) - a(51) - a(52) - a(53) - a(54) - a(55) - a(56)
a(41) = s1 - a(42) - a(43) - a(44) - a(45) - a(46) - a(47) - a(48)
a(37) = 2*s1 - a(38) - a(39) - a(40) - a(45) - a(46) - a(47) - a(48) - a(53) - a(54) - a(55) - a(56) +
- a(61) - a(62) - a(63) - a(64)
a(36) = a(40) - a(44) + a(48) - a(52) + a(56) - a(60) + a(64)
a(35) = a(39) - a(43) + a(47) - a(51) + a(55) - a(59) + a(63)
a(34) = a(38) - a(42) + a(46) - a(50) + a(54) - a(58) + a(62)
a(33) = - a(38) - a(39) - a(40) + a(42) + a(43) + a(44) + a(45) + a(50) + a(51) + a(52) + a(53) +
- a(57) - a(62) - a(63) - a(64)
The solutions can be obtained by guessing a(64) ... a(58), a(56) ... a(50), a(48) ... a(42), a(40) ... a(38) and filling out these guesses in the equations shown above.
8.6.4 Compact versus Partly Compact
In previous sections the property Compact has been introduced and several times applied (e.g. Franklin Squares).
Notes: Rectangles are described by width (columns) x height (rows).
In following sections the properties described above will be applied on
Associated (ref. Section 8.6.2)
and
Complete (ref. Section 8.6.3)
Pan Magic Squares.
8.6.5 Pan Magic, Compact, Associated
For Compact Associated Pan Magic Squares, following equations should be added to the equations defining an Associated Pan Magic Square:
a(i) + a(i+1) + a(i+ 8) + a(i+ 9) = s1/2 with 1 =< i < 56 and i ≠ 8 * n for n = 1, 2 ... 7
which results - after deduction - in following linear equations describing Associated Compact Pan Magic: a(61) = s1/2 - a(62) - a(63) - a(64) a(59) = s1/2 - a(60) - a(63) - a(64) a(58) = -s1/2 + a(60) + a(62) + 2 * a(63) + a(64) a(57) = s1/2 - a(60) - a(62) - a(63) a(55) = s1/2 - a(56) - a(63) - a(64) a(54) = a(56) - a(62) + a(64) a(53) = - a(56) + a(62) + a(63) a(52) = a(56) - a(60) + a(64) a(51) = - a(56) + a(60) + a(63) a(50) = s1/2 + a(56) - a(60) - a(62) - 2 * a(63) a(49) = - a(56) + a(60) + a(62) + a(63) - a(64) a(47) = - a(48) + a(63) + a(64) a(46) = a(48) + a(62) - a(64) a(45) = s1/2 - a(48) - a(62) - a(63) a(44) = a(48) + a(60) - a(64) a(43) = s1/2 - a(48) - a(60) - a(63) a(42) = -s1/2 + a(48) + a(60) + a(62) + 2 * a(63) a(41) = s1/2 - a(48) - a(60) - a(62) - a(63) + a(64) a(40) = s1/2 - a(48) - a(56) - a(64) a(39) = a(48) + a(56) - a(63) a(38) = s1/2 - a(48) - a(56) - a(62) a(37) = -s1/2 + a(48) + a(56) + a(62) + a(63) + a(64) a(36) = s1/2 - a(48) - a(56) - a(60) a(35) = -s1/2 + a(48) + a(56) + a(60) + a(63) + a(64) a(34) = s1 - a(48) - a(56) - a(60) - a(62) - 2 * a(63) - a(64) a(33) = -s1/2 + a(48) + a(56) + a(60) + a(62) + a(63)
The solutions can be obtained by guessing a(64) ... a(62), a(60), a(56), a(48) and filling out these guesses in the equations shown above.
8.6.6 Pan Magic, Compact, Complete
Pan Magic, Compact and Complete or Most Perfect Magic Squares have been discussed in detail in Section 8.5.5.
8.6.7 Pan Magic, Non Overlapping Sub Squares, Associated (1)
For Associated Pan Magic Squares with Non Overlapping Sub Squares, following equations should be added to the equations defining an Associated Pan Magic Square:
a(i) + a(i + 1) + a(i + 8) + a(i + 9) = s1/2 with i = m + 16 * n`and m = 1, 3, 5, 7 ; n = 0, 1, 2, 3
which results - after deduction - in following linear equations describing subject Associated Pan Magic Squares:
a(57) = s1 - a(58) - a(59) - a(60) - a(61) - a(62) - a(63) - a(64)
a(55) = s1/2 - a(56) - a(63) - a(64)
a(53) = s1/2 - a(54) - a(61) - a(62)
a(51) = s1/2 - a(52) - a(59) - a(60)
a(49) = s1/2 - a(50) - a(57) - a(58)
a(45) = s1 - a(46) - a(47) - a(48) + a(50) - a(52) - a(54) + a(56) + a(58) - a(60) - a(61) - 2 * a(62) - a(63)
a(44) = - s1 + a(48) - a(50) + a(54) + a(59) + a(60) + 2 * a(61) + 2 * a(62) + a(63) + a(64)
a(43) = s1 - a(47) - 2 * a(48) + a(50) - a(54) - 2 * a(61) - 2 * a(62)
a(42) = - s1 + a(46) + 2 * a(47) + 2 * a(48) - 2 * a(50) + a(52) + 2 * a(54) - a(56) - 2 * a(58) - a(59) +
+ a(60) + 2 * a(61) + 4 * a(62) + a(63) - a(64)
a(41) = s1 - a(46) - a(47) - a(48) + a(50) - a(54) + a(58) - a(60) - a(61) - 2 * a(62) - a(63)
a(40) = s1 - a(47) - 2 * a(48) - a(54) - a(61) - 2 * a(62)
a(39) = - s1/2 + a(48) + a(54) + a(61) + 2 * a(62)
a(38) = s1 - a(46) - a(47) - a(48) + a(50) - a(52) - a(54) + a(58) - a(60) - a(61) - 2 * a(62)
a(37) = -3*s1/2 + a(46) + 2 * a(47) + 2 * a(48) - 2 * a(50) + 2 * a(52) + 2 * a(54) - a(56) - 2 * a(58) +
+ 2 * a(60) + 2 * a(61) + 4 * a(62) + a(63)
a(36) = a(47) - a(54) + a(57)
a(35) = - s1/2 + a(48) + a(54) + a(58) + a(61) + a(62)
a(34) = s1 - a(46) - a(47) - a(48) + a(50) - a(52) - a(54) + a(58) + a(59) - a(60) - a(61) - 2 * a(62) - a(63)
a(33) = - s1/2 + a(46) + a(56) + a(60) + a(63) + a(64)
The solutions can be obtained by guessing a(64) ... a(58), a(56), a(54), a(52), a(50), a(48) ... a(46) and filling out these guesses in the equations shown above.
8.6.8 Pan Magic, Non Overlapping Sub Squares, Associated (2)
For Associated Pan Magic Squares, composed out of 16 Non Overlapping Sub Squares, with also the half rows and half columns summing to half the Magic Sum, following set of linear equations is applicable: a(61) = s1/2 - a(62) - a(63) - a(64) a(57) = s1/2 - a(58) - a(59) - a(60) a(55) = s1/2 - a(56) - a(63) - a(64) a(54) = a(56) - a(62) + a(64) a(53) = - a(56) + a(62) + a(63) a(51) = s1/2 - a(52) - a(59) - a(60) a(50) = a(52) - a(58) + a(60) a(49) = - a(52) + a(58) + a(59) a(47) = - a(48) + a(63) + a(64) a(45) = s1/2 - a(46) - a(63) - a(64) a(44) = a(48) - a(52) + a(56) + a(58) + a(59) - a(62) - a(63) a(43) = - a(48) + a(52) - a(56) - a(58) + a(60) + a(62) + a(63) a(42) = a(46) - a(52) + a(56) - a(59) - a(60) + a(63) + a(64) a(41) = s1/2 - a(46) + a(52) - a(56) - a(63) - a(64) a(40) = s1/2 - a(48) - a(56) - a(64) a(39) = a(48) + a(56) - a(63) a(38) = s1/2 - a(46) - a(56) - a(64) a(37) = -s1/2 + a(46) + a(56) + a(63) + 2 * a(64) a(36) = s1/2 - a(48) - a(56) - a(58) - a(59) - a(60) + a(62) + a(63) a(35) = a(48) + a(56) + a(58) - a(62) - a(63) a(34) = s1/2 - a(46) - a(56) + a(59) - a(63) - a(64) a(33) = -s1/2 + a(46) + a(56) + a(60) + a(63) + a(64)
The solutions can be obtained by guessing a(64) ... a(62), a(60) ... a(58), a(56), a(52), a(48), (46) and filling out these guesses in the equations shown above.
8.6.9 Pan Magic, Non Overlapping Sub Squares, Complete
For Complete Pan Magic Squares, composed out of 16 Non Overlapping Sub Squares, with also the half rows and half columns summing to half the Magic Sum, following set of linear equations is applicable: a(61) = s1/2 - a(62) - a(63) - a(64) a(57) = s1/2 - a(58) - a(59) - a(60) a(55) = s1/2 - a(56) - a(63) - a(64) a(53) = - a(54) + a(63) + a(64) a(51) = s1/2 - a(52) - a(59) - a(60) a(49) = - a(50) + a(59) + a(60) a(45) = s1/2 - a(46) - a(47) - a(48) a(41) = s1/2 - a(42) - a(43) - a(44) a(40) = s1/2 - a(48) - a(56) - a(64) a(39) = - a(47) + a(56) + a(64) a(38) = s1/2 - a(46) - a(54) - a(62) a(37) = -s1/2 + a(46) + a(47) + a(48) + a(54) + a(62) a(36) = s1/2 - a(44) - a(52) - a(60) a(35) = - a(43) + a(52) + a(60) a(34) = s1/2 - a(42) - a(50) - a(58) a(33) = -s1/2 + a(42) + a(43) + a(44) + a(50) + a(58)
The solutions can be obtained by guessing:
8.6.10 Pan Magic, Associated, Rectangular Compact
Rectangular Compact (2 x 4) Ultra Magic Squares are described by following linear equations: a(59) = s1/2 - a(60) - a(63) - a(64) a(57) = s1/2 - a(58) - a(61) - a(62) a(54) = s1/2 - a(55) - a(62) - a(63) a(53) = s1/2 - a(56) - a(61) - a(64) a(51) = s1/2 - a(52) - a(55) - a(56) a(50) = -s1/2 + a(52) + a(55) + a(56) - a(58) + a(60) + a(63) + a(64) a(49) = - a(52) + a(58) - a(60) + a(61) + a(62) a(47) = s1 - a(48) - a(55) - a(56) - a(61) - a(62) - a(63) - a(64) a(46) = -s1/2 + a(48) + a(55) + a(56) + a(58) - a(60) + a(61) + a(62) a(45) = s1/2 - a(48) - a(58) + a(60) - a(61) - a(62) a(44) = -s1/2 + a(48) - a(52) + a(56) + a(58) - a(60) + 2 * a(61) + a(62) + a(64) a(43) = - a(48) + a(52) + a(55) - a(58) + a(60) - a(61) + a(63) a(42) = a(48) - a(52) - a(55) + a(58) - a(60) + a(61) + a(62) a(41) = s1/2 - a(48) + a(52) - a(56) - a(58) + a(60) - a(61) - a(62) a(40) = s1/2 - a(48) - a(56) - a(64) a(39) = -s1/2 + a(48) + a(56) + a(61) + a(62) + a(64) a(38) = s1/2 - a(48) - a(56) - a(58) + a(60) - a(61) - a(62) + a(63) a(37) = -s1/2 + a(48) + a(56) + a(58) - a(60) + a(61) + a(62) + a(64) a(36) = s1 - a(48) - a(56) - a(58) - 2 * a(61) - a(62) - a(64) a(35) = -s1/2 + a(48) + a(56) + a(58) + a(61) + a(64) a(34) = s1 - a(48) - a(56) - a(58) - a(61) - a(62) - a(63) - a(64) a(33) = -s1/2 + a(48) + a(56) + a(58) + a(61) + a(62)
The solutions can be obtained by guessing a(64) ... a(60), a(58), a(56), a(55), a(52), a(48) and filling out these guesses in the equations shown above.
8.6.11 Pan Magic, Complete, Rectangular Compact
Rectangular Compact (2 x 4) Complete Pan Magic Squares are described by following linear equations: a(59) = s1/2 - a(60) - a(63) - a(64) a(58) = a(60) - a(62) + a(64) a(57) = s1/2 - a(60) - a(61) - a(64) a(51) = s1/2 - a(52) - a(55) - a(56) a(50) = a(52) - a(54) + a(56) a(49) = s1/2 - a(52) - a(53) - a(56) a(43) = s1/2 - a(44) - a(47) - a(48) a(42) = a(44) - a(46) + a(48) a(41) = s1/2 - a(44) - a(45) - a(48) a(39) = s1 - a(40) - a(47) - a(48) - a(55) - a(56) - a(63) - a(64) a(38) = a(40) - a(46) + a(48) - a(54) + a(56) - a(62) + a(64) a(37) = s1 - a(40) - a(45) - a(48) - a(53) - a(56) - a(61) - a(64) a(36) = a(40) - a(44) + a(48) - a(52) + a(56) - a(60) + a(64) a(35) = -s1/2 - a(40) + a(44) + a(47) + a(52) + a(55) + a(60) + a(63) a(34) = a(40) - a(44) + a(46) - a(52) + a(54) - a(60) + a(62) a(33) = -s1/2 - a(40) + a(44) + a(45) + a(52) + a(53) + a(60) + a(61)
The solutions can be obtained by guessing a(64) ... a(60), a(56) ... a(52), a(48) ... a(44), a(40) and filling out these guesses in the equations shown above.
8.6.12 Magic, Associated, Partly Rectangular Compact
a(57) = s1 - a(58) - a(59) - a(60) - a(61) - a(62) - a(63) - a(64) a(53) = s1 - a(54) - a(55) - a(56) - a(61) - a(62) - a(63) - a(64) a(52) = a(56) - a(60) + a(64) a(51) = a(55) - a(59) + a(63) a(50) = a(54) - a(58) + a(62) a(49) = a(53) - a(57) + a(61) a(45) = - a(46) - a(47) - a(48) + a(61) + a(62) + a(63) + a(64) a(43) = - a(44) + a(47) + a(48) + a(59) + a(60) - a(63) - a(64) a(41) = s1 - a(42) - a(47) - a(48) - a(59) - a(60) - a(61) - a(62) a(40) = s1/2 - a(48) - a(56) - a(64) a(39) = s1/2 - a(47) - a(55) - a(63) a(38) = s1/2 - a(46) - a(54) - a(62) a(37) = -s1/2 + a(46) + a(47) + a(48) + a(54) + a(55) + a(56) - a(61) a(36) = s1/2 - a(44) - a(56) - a(64) a(35) = s1/2 + a(44) - a(47) - a(48) - a(55) - a(59) - a(60) + a(64) a(34) = s1/2 - a(42) - a(54) - a(62) a(33) = s1/2 + a(42) + a(47) + a(48) - a(53) - a(57) - a(58) - a(61) - a(63) - a(64)
The solutions can be obtained by guessing:
8.6.13 Pan Magic, Complete, Parttly Rectangular Compact
a(61) = s1/2 - a(62) - a(63) - a(64) a(59) = s1/2 - a(60) - a(63) - a(64) a(57) = - a(58) + a(63) + a(64) a(53) = s1/2 - a(54) - a(55) - a(56) a(51) = s1/2 - a(52) - a(55) - a(56) a(50) = a(52) - a(54) + a(56) - a(58) + a(60) - a(62) + a(64) a(49) = - a(52) + a(54) + a(55) + a(58) - a(60) + a(62) - a(64) a(45) = s1/2 - a(46) - a(47) - a(48) a(43) = s1/2 - a(44) - a(47) - a(48) a(41) = - a(42) + a(47) + a(48) a(39) = s1 - a(40) - a(47) - a(48) - a(55) - a(56) - a(63) - a(64) a(38) = a(40) - a(46) + a(48) - a(54) + a(56) - a(62) + a(64) a(37) = -s1/2 - a(40) + a(46) + a(47) + a(54) + a(55) + a(62) + a(63) a(36) = a(40) - a(44) + a(48) - a(52) + a(56) - a(60) + a(64) a(35) = -s1/2 - a(40) + a(44) + a(47) + a(52) + a(55) + a(60) + a(63) a(34) = a(40) - a(42) + a(48) - a(52) + a(54) - a(60) + a(62) a(33) = s1 - a(40) + a(42) - a(47) - 2 * a(48) + a(52) - a(54) - a(55) - a(56) + a(60) - a(62) - a(63) - a(64)
The solutions can be obtained by guessing:
The linear equations deducted above, have been applied in following Excel Spread Sheets:
Only the red figures have to be “guessed” to construct one of the applicable 8th order Magic Squares (wrong solutions are obvious).
|
|
|
Index | About the Author |