Office Applications and Entertainment, Magic Squares | ||
|
|
Index | About the Author |
|
7.5 Concentric and Eccentric Magic Squares
7.5.6 Concentric Magic Squares (7 x 7) Based on the equations defining order 7 Concentric Magic Squares with Crosswise Symmetric Border:
a(31) = 3 * s1/7 - a(32) - a(33)
a(26) = s1/7 + a(31) - a(33)
a(25) = s1/7
a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49)
a(29) = s1 - a(30) - a(34) - a(35) - a(31) - a(32) - a(33)
a(13) = -s1/7 + a(14) + a(28) - a(34) + a(35) - a(48) + a(49)
a(10) = -s1/7 + a(12) - a(45) + a(47) + a(26) - a(31) + a(33)
a( 9) = (24*s1/7 - a(11) - 2 * a(12) - 2 * a(14) - a(23) - a(28) - 2 * a(30) +
- 2 * a(35) - 2 * a(44) - a(46) - 2 * a(47) - 2*a(49) - a(26) - a(32) - 2*a(33))/2
a( 8) = s1 - a(9) - a(10) - a(11) - a(12) - a(13) - a(14)
a routine can be written to generate subject Concentric Magic Squares (ref. Priem7e18).
7.5.7 Concentric Pan Magic Squares (7 x 7) Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Simple Magic Center Square: a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(38) = 4 * s1/7 - a(39) - a(40) - a(46) a(37) = s1/7 - a(41) + a(46) a(31) = 6 * s1/7 - a(32) - a(33) - a(39) - a(45) - a(47) a(30) = 3 * s1/7 - a(34) - a(38) - a(40) + a(45) - a(46) + a(47) a(28) = s1 - a(34) - a(40) - a(42) - a(46) - a(48) - a(49) a(27) = 6 * s1/7 - a(33) - a(34) - a(35) + a(38) - 2 * a(41) + a(46) - a(47) - a(49) a(26) = 8 * s1/7 - a(32) - a(33) - a(34) - a(40) - a(41) - a(42) - a(48) a(24) = -4 * s1/7 + a(33) + a(34) + a(39) + a(40) + a(41) + a(42) - a(44) a(23) = - a(27) + a(32) - a(39) + a(44) + a(48) a(21) = -s1/7 + a(34) + a(40) + a(41) - a(45) a(20) = -3 * s1/7 - a(27) + a(40) + a(42) + a(46) + a(48) + a(49) a(19) = -s1/7 - a(31) + a(34) - a(38) - a(39) + 2 * a(41) + a(42) - a(46) + a(48) + a(49) a(18) = 3 * s1/7 + a(38) + a(40) - a(43) - a(45) - a(47) - a(49) a(17) = 9 * s1/7 - a(33) - a(34) - a(40) - 2 * a(41) - a(42) - a(48) - a(49) a(16) = 5 * s1/7 + a(26) - a(35) - a(39) - a(40) - a(41) + a(43) - a(47) - a(49) a(14) = 6 * s1/7 - a(35) - a(41) - a(44) - a(47) - a(49) a(13) = 8 * s1/7 - a(34) - a(40) - a(41) - a(42) - a(46) - a(48) - a(49) a(12) = 4 * s1/7 - a(33) + a(38) - a(41) - a(45) + a(46) - a(47) - a(49) a(11) = 4 * s1/7 - a(32) - a(44) - a(48) a(10) = s1/7 + a(32) + a(33) - a(38) + a(41) - a(43) - a(46) a( 9) = -5 * s1/7 + a(34) + a(40) + a(41) + a(42) + a(48) + a(49) a(25) = s1/7
a routine can be written to generate subject Concentric Pan Magic Squares (ref. Priem7e19).
7.5.8 Concentric Pan Magic Squares (7 x 7) Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Associated Center Square: a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(38) = 4 * s1/7 - a(39) - a(40) - a(46) a(37) = s1/7 - a(41) + a(46) a(35) = 6 * s1/7 - a(41) - a(42) - a(47) - a(48) - a(49) a(34) = s1 - a(40) - 2 * a(41) - a(42) - a(48) - a(49) a(33) = 10 * s1/7 - 2 * a(39) - 2 * a(40) - a(41) - a(45) - a(46) - a(47) - a(49) a(32) = 2 * s1/7 + a(39) - a(44) - a(48) a(31) = -6 * s1/7 + 2 * a(40) + a(41) + a(44) + a(46) + a(48) + a(49) a(30) = -8 * s1/7 + a(39) + a(40) + 2 * a(41) + a(42) + a(45) + a(47) + a(48) + a(49) a(28) = 2 * a(41) - a(46) a(27) = -13 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + 2 * a(42) + a(45) + a(46) + a(47) + 2*a(48) + 2*a(49) a(26) = -11 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + a(44) + a(45) + a(46) + a(47) + a(48) + 2*a(49) a(21) = 6 * s1/7 - a(41) - a(42) - a(45) - a(48) - a(49) a(14) = a(42) - a(44) + a(48) a(25) = s1/7
a routine can be written to generate subject Concentric Pan Magic Squares (ref. Priem7e20).
The obtained results regarding the miscellaneous types of order 7 Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Type
Characteristics
Subroutine
Results
-
-
-
-
Concentric
Crosswise Symmetric Border
Concentric
Pan Magic
Concentric
Pan Magic, Associated Center Square
-
-
-
-
|
Comparable routines as listed above, can be used to generate Inlaid Magic Squares of order 7, which will be described in following sections.
|
|
|
Index | About the Author |