Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

7.5   Concentric and Eccentric Magic Squares

7.5.6 Concentric Magic Squares (7 x 7)
      Crosswise Symmetric Border

Based on the equations defining order 7 Concentric Magic Squares with Crosswise Symmetric Border:

a(31) = 3 * s1/7 - a(32) - a(33)
a(26) =     s1/7 + a(31) - a(33)
a(25) =     s1/7

a(43) =     s1   - a(44) - a(45) - a(46) - a(47) - a(48) - a(49)
a(29) =     s1   - a(30) - a(34) - a(35) - a(31) - a(32) - a(33)
a(13) =    -s1/7 + a(14) + a(28) - a(34) + a(35) - a(48) + a(49)
a(10) =    -s1/7 + a(12) - a(45) + a(47) + a(26) - a(31) + a(33)
a( 9) = (24*s1/7 - a(11) - 2 * a(12) - 2 * a(14) - a(23) - a(28) - 2 * a(30) +
                         - 2 * a(35) - 2 * a(44) - a(46) - 2 * a(47) - 2*a(49) - a(26) - a(32) - 2*a(33))/2
a( 8) =     s1 - a(9) - a(10) - a(11) - a(12) - a(13) - a(14)

a(24) = 2*s1/7 - a(26)
a(19) = 2*s1/7 - a(31)
a(18) = 2*s1/7 - a(32)
a(17) = 2*s1/7 - a(33)

a(42) = 2*s1/7 - a(48)
a(41) = 2*s1/7 - a(49)
a(40) = 2*s1/7 - a(45)
a(39) = 2*s1/7 - a(46)
a(38) = 2*s1/7 - a(47)
a(37) = 2*s1/7 - a(43)
a(36) = 2*s1/7 - a(44)

a(27) = 2*s1/7 - a(28)
a(22) = 2*s1/7 - a(23)
a(21) = 2*s1/7 - a(34)
a(20) = 2*s1/7 - a(35)
a(16) = 2*s1/7 - a(29)
a(15) = 2*s1/7 - a(30)

a(7) = 2*s1/7 - a(13)
a(6) = 2*s1/7 - a(14)
a(5) = 2*s1/7 - a(10)
a(4) = 2*s1/7 - a(11)
a(3) = 2*s1/7 - a(12)
a(2) = 2*s1/7 - a( 8)
a(1) = 2*s1/7 - a( 9)

a routine can be written to generate subject Concentric Magic Squares (ref. Priem7e18).

The solutions can be obtained by guessing the 16 parameters:

    a(i) for i = 11, 12, 14, 23, 28, 30, 32 ... 35, 44 ... 49

and filling out these guesses in the abovementioned equations.

Attachment 7.5.6 shows for a(33) = 2 ... 24, 26 ... 48 the first occurring Concentric Magic Square with Crosswise Symmetric Border.

7.5.7 Concentric Pan Magic Squares (7 x 7)
      Simple Magic Center Square

Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Simple Magic Center Square:

a(43) =      s1   - a(44) - a(45) - a(46) - a(47) - a(48) - a(49)
a(38) =  4 * s1/7 - a(39) - a(40) - a(46)
a(37) =      s1/7 - a(41) + a(46)
a(31) =  6 * s1/7 - a(32) - a(33) - a(39) - a(45) - a(47)
a(30) =  3 * s1/7 - a(34) - a(38) - a(40) + a(45) - a(46) + a(47)
a(28) =      s1   - a(34) - a(40) - a(42) - a(46) - a(48) - a(49)
a(27) =  6 * s1/7 - a(33) - a(34) - a(35) + a(38) - 2 * a(41) + a(46) - a(47) - a(49)
a(26) =  8 * s1/7 - a(32) - a(33) - a(34) - a(40) - a(41) - a(42) - a(48)
a(24) = -4 * s1/7 + a(33) + a(34) + a(39) + a(40) + a(41) + a(42) - a(44)
a(23) =           - a(27) + a(32) - a(39) + a(44) + a(48)
a(21) =     -s1/7 + a(34) + a(40) + a(41) - a(45)
a(20) = -3 * s1/7 - a(27) + a(40) + a(42) + a(46) + a(48) + a(49)
a(19) =     -s1/7 - a(31) + a(34) - a(38) - a(39) + 2 * a(41) + a(42) - a(46) + a(48) + a(49)
a(18) =  3 * s1/7 + a(38) + a(40) - a(43) - a(45) - a(47) - a(49)
a(17) =  9 * s1/7 - a(33) - a(34) - a(40) - 2 * a(41) - a(42) - a(48) - a(49)
a(16) =  5 * s1/7 + a(26) - a(35) - a(39) - a(40) - a(41) + a(43) - a(47) - a(49)
a(14) =  6 * s1/7 - a(35) - a(41) - a(44) - a(47) - a(49)
a(13) =  8 * s1/7 - a(34) - a(40) - a(41) - a(42) - a(46) - a(48) - a(49)
a(12) =  4 * s1/7 - a(33) + a(38) - a(41) - a(45) + a(46) - a(47) - a(49)
a(11) =  4 * s1/7 - a(32) - a(44) - a(48)
a(10) =      s1/7 + a(32) + a(33) - a(38) + a(41) - a(43) - a(46)
a( 9) = -5 * s1/7 + a(34) + a(40) + a(41) + a(42) + a(48) + a(49)
a(25) =      s1/7

a(1) = 2*s1/7 - a(49)
a(2) = 2*s1/7 - a(44)
a(3) = 2*s1/7 - a(45)

a(4) = 2*s1/7 - a(46)
a(5) = 2*s1/7 - a(47)
a(6) = 2*s1/7 - a(48)

a( 7) = 2*s1/7 - a(43)
a( 8) = 2*s1/7 - a(14)
a(15) = 2*s1/7 - a(21)

a(22) = 2*s1/7 - a(28)
a(29) = 2*s1/7 - a(35)
a(36) = 2*s1/7 - a(42)

a routine can be written to generate subject Concentric Pan Magic Squares (ref. Priem7e19).

The solutions can be obtained by guessing the 14 parameters:

    a(i) for i = 32 ... 35, 39 ... 42, 44 ... 49

and filling out these guesses in the abovementioned equations.

Attachment 7.5.7 shows for a(49) = 1 ... 24, 26 ... 49 the first occurring Concentric Pan Magic Squares.

7.5.8 Concentric Pan Magic Squares (7 x 7)
      Associated Center Square

Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Associated Center Square:

a(43) =       s1   - a(44) - a(45) - a(46) - a(47) - a(48) - a(49)
a(38) =   4 * s1/7 - a(39) - a(40) - a(46)
a(37) =       s1/7 - a(41) + a(46)
a(35) =   6 * s1/7 - a(41) - a(42) - a(47) - a(48) - a(49)
a(34) =       s1   - a(40) - 2 * a(41) - a(42) - a(48) - a(49)
a(33) =  10 * s1/7 - 2 * a(39) - 2 * a(40) - a(41) - a(45) - a(46) - a(47) - a(49)
a(32) =   2 * s1/7 + a(39) - a(44) - a(48)
a(31) =  -6 * s1/7 + 2 * a(40) + a(41) + a(44) + a(46) + a(48) + a(49)
a(30) =  -8 * s1/7 + a(39) + a(40) + 2 * a(41) + a(42) + a(45) + a(47) + a(48) + a(49)
a(28) =              2 * a(41) - a(46)
a(27) = -13 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + 2 * a(42) + a(45) + a(46) + a(47) + 2*a(48) + 2*a(49)
a(26) = -11 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + a(44) + a(45) + a(46) + a(47) + a(48) + 2*a(49)
a(21) =   6 * s1/7 - a(41) - a(42) - a(45) - a(48) - a(49)
a(14) =              a(42) - a(44) + a(48)
a(25) =       s1/7

a(1) = 2*s1/7 - a(49)
a(2) = 2*s1/7 - a(44)
a(3) = 2*s1/7 - a(45)
a(4) = 2*s1/7 - a(46)
a(5) = 2*s1/7 - a(47)
a(6) = 2*s1/7 - a(48)

a( 7) = 2*s1/7 - a(43)
a( 8) = 2*s1/7 - a(14)
a( 9) = 2*s1/7 - a(41)
a(10) = 2*s1/7 - a(40)
a(11) = 2*s1/7 - a(39)
a(12) = 2*s1/7 - a(38)

a(13) = 2*s1/7 - a(37)
a(15) = 2*s1/7 - a(21)
a(16) = 2*s1/7 - a(34)
a(17) = 2*s1/7 - a(33)
a(18) = 2*s1/7 - a(32)
a(19) = 2*s1/7 - a(31)

a(20) = 2*s1/7 - a(30)
a(22) = 2*s1/7 - a(28)
a(23) = 2*s1/7 - a(27)
a(24) = 2*s1/7 - a(26)
a(29) = 2*s1/7 - a(35)
a(36) = 2*s1/7 - a(42)

a routine can be written to generate subject Concentric Pan Magic Squares (ref. Priem7e20).

The solutions can be obtained by guessing the 10 parameters:

    a(i) for i = 39 ... 42, 44 ... 49

and filling out these guesses in the abovementioned equations.

Attachment 7.5.8 shows for a(49) = 1 ... 24, 26 ... 49 the first occurring Concentric Pan Magic Squares.

7.5.9 Summary

The obtained results regarding the miscellaneous types of order 7 Magic Squares as deducted and discussed in previous sections are summarized in following table:

Type

Characteristics

Subroutine

Results

-

-

-

-

Concentric

Crosswise Symmetric Border

Priem7e18

Attachment 7.5.6

Concentric

Pan Magic

Priem7e19

Attachment 7.5.7

Concentric

Pan Magic, Associated Center Square

Priem7e20

Attachment 7.5.8

-

-

-

-

Comparable routines as listed above, can be used to generate Inlaid Magic Squares of order 7, which will be described in following sections.


Vorige Pagina Volgende Pagina Index About the Author