Office Applications and Entertainment, Magic Squares | ||
![]() ![]() |
Index | About the Author |
14.0 Special Magic Squares, Prime Numbers
14.5 Magic Squares (7 x 7), Part II
In next sections a few more solutions will be found for more strict defined Prime Number Magic Squares of the 7th order.
14.5.17 Non Overlapping Sub Squares
The order 7 Associated Magic Squares as described Section 14.5.7 can also be obtained by means of a transformation of order 7 Composed Magic Squares as illustrated below: |
MC7 = 10409
2963 17 1481 2927 1097 311 1613 5 1487 2969 173 701 2273 2801 1493 2957 11 1361 2663 1877 47 1451 317 2693 911 887 1373 2777 2213 1277 971 1997 2153 1667 131 2003 1697 761 2843 1307 821 977 281 2657 1523 197 1601 2087 2063 = > MC7 = 10409
911 1451 887 317 1373 2693 2777 2927 2963 1097 17 311 1481 1613 1997 2213 2153 1277 1667 971 131 173 5 701 1487 2273 2969 2801 2843 2003 1307 1697 821 761 977 1361 1493 2663 2957 1877 11 47 197 281 1601 2657 2087 1523 2063
The Magic Square shown at the left side above is composed out of:
Based on this definition a routine can be developed to generate subject Composed Magic Squares (ref. Priem7e3).
|
MC7 = 10409
2963 17 1481 2927 1097 311 1613 5 1487 2969 173 701 2273 2801 1493 2957 11 1361 2663 1877 47 1451 317 2693 911 887 1373 2777 2213 1277 971 1997 2153 1667 131 2003 1697 761 2843 1307 821 977 281 2657 1523 197 1601 2087 2063 = > MC7 = 10409
911 887 1451 317 2693 1373 2777 1997 2153 2213 1277 971 1667 131 2927 1097 2963 17 1481 311 1613 173 701 5 1487 2969 2273 2801 1361 2663 1493 2957 11 1877 47 2843 1307 2003 1697 761 821 977 197 1601 281 2657 1523 2087 2063
It should be noted that the reversed transformations are not necessarily possible because of the bottom-left / top-right Main Diagonal.
14.5.18 Concentric Magic Squares (7 x 7) Based on the equations defining order 7 Concentric Magic Squares with Crosswise Symmetric Border: a(31) = 3 * s1/7 - a(32) - a(33) a(26) = s1/7 + a(31) - a(33) a(25) = s1/7 a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(29) = s1 - a(30) - a(34) - a(35) - a(31) - a(32) - a(33) a(13) = -s1/7 + a(14) + a(28) - a(34) + a(35) - a(48) + a(49) a(10) = -s1/7 + a(12) - a(45) + a(47) + a(26) - a(31) + a(33) a( 9) = (24*s1/7 - a(11) - 2 * a(12) - 2 * a(14) - a(23) - a(28) - 2 * a(30) + - 2 * a(35) - 2 * a(44) - a(46) - 2 * a(47) - 2*a(49) - a(26) - a(32) - 2*a(33))/2 a( 8) = s1 - a(9) - a(10) - a(11) - a(12) - a(13) - a(14)
a routine can be written to generate subject Prime Number Concentric Magic Squares (ref. Priem7e18).
14.5.19 Concentric Pan Magic Squares (7 x 7) Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Simple Magic Center Square: a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(38) = 4 * s1/7 - a(39) - a(40) - a(46) a(37) = s1/7 - a(41) + a(46) a(31) = 6 * s1/7 - a(32) - a(33) - a(39) - a(45) - a(47) a(30) = 3 * s1/7 - a(34) - a(38) - a(40) + a(45) - a(46) + a(47) a(28) = s1 - a(34) - a(40) - a(42) - a(46) - a(48) - a(49) a(27) = 6 * s1/7 - a(33) - a(34) - a(35) + a(38) - 2 * a(41) + a(46) - a(47) - a(49) a(26) = 8 * s1/7 - a(32) - a(33) - a(34) - a(40) - a(41) - a(42) - a(48) a(24) = -4 * s1/7 + a(33) + a(34) + a(39) + a(40) + a(41) + a(42) - a(44) a(23) = - a(27) + a(32) - a(39) + a(44) + a(48) a(21) = -s1/7 + a(34) + a(40) + a(41) - a(45) a(20) = -3 * s1/7 - a(27) + a(40) + a(42) + a(46) + a(48) + a(49) a(19) = -s1/7 - a(31) + a(34) - a(38) - a(39) + 2 * a(41) + a(42) - a(46) + a(48) + a(49) a(18) = 3 * s1/7 + a(38) + a(40) - a(43) - a(45) - a(47) - a(49) a(17) = 9 * s1/7 - a(33) - a(34) - a(40) - 2 * a(41) - a(42) - a(48) - a(49) a(16) = 5 * s1/7 + a(26) - a(35) - a(39) - a(40) - a(41) + a(43) - a(47) - a(49) a(14) = 6 * s1/7 - a(35) - a(41) - a(44) - a(47) - a(49) a(13) = 8 * s1/7 - a(34) - a(40) - a(41) - a(42) - a(46) - a(48) - a(49) a(12) = 4 * s1/7 - a(33) + a(38) - a(41) - a(45) + a(46) - a(47) - a(49) a(11) = 4 * s1/7 - a(32) - a(44) - a(48) a(10) = s1/7 + a(32) + a(33) - a(38) + a(41) - a(43) - a(46) a( 9) = -5 * s1/7 + a(34) + a(40) + a(41) + a(42) + a(48) + a(49) a(25) = s1/7
a routine can be written to generate subject Prime Number Concentric Pan Magic Squares (ref. Priem7e19).
14.5.20 Concentric Pan Magic Squares (7 x 7) Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Associated Center Square: a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(38) = 4 * s1/7 - a(39) - a(40) - a(46) a(37) = s1/7 - a(41) + a(46) a(35) = 6 * s1/7 - a(41) - a(42) - a(47) - a(48) - a(49) a(34) = s1 - a(40) - 2 * a(41) - a(42) - a(48) - a(49) a(33) = 10 * s1/7 - 2 * a(39) - 2 * a(40) - a(41) - a(45) - a(46) - a(47) - a(49) a(32) = 2 * s1/7 + a(39) - a(44) - a(48) a(31) = -6 * s1/7 + 2 * a(40) + a(41) + a(44) + a(46) + a(48) + a(49) a(30) = -8 * s1/7 + a(39) + a(40) + 2 * a(41) + a(42) + a(45) + a(47) + a(48) + a(49) a(28) = 2 * a(41) - a(46) a(27) = -13 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + 2 * a(42) + a(45) + a(46) + a(47) + 2*a(48) + 2*a(49) a(26) = -11 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + a(44) + a(45) + a(46) + a(47) + a(48) + 2*a(49) a(21) = 6 * s1/7 - a(41) - a(42) - a(45) - a(48) - a(49) a(14) = a(42) - a(44) + a(48) a(25) = s1/7
a routine can be written to generate subject Prime Number Concentric Pan Magic Squares (ref. Priem7e20).
The obtained results regarding the miscellaneous types of order 7 Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Type
Characteristics
Subroutine
Results
-
-
-
-
Composed
Associated Crnr Sqrs and - Rectangles
Concentric
Crosswise Symmetric Border
Concentric
Pan Magic
Concentric
Pan Magic, Associated Center Square
-
-
-
-
Comparable routines as listed above, can be used to generate Prime Number Magic Squares of order 8, which will be described in following sections.
|
![]() ![]() |
Index | About the Author |