Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

14.0    Special Magic Squares, Prime Numbers

14.5    Magic Squares (7 x 7), Part II

In next sections a few more solutions will be found for more strict defined Prime Number Magic Squares of the 7th order.

14.5.17 Non Overlapping Sub Squares

The order 7 Associated Magic Squares as described Section 14.5.7 can also be obtained by means of a transformation of order 7 Composed Magic Squares as illustrated below:

MC7 = 10409
2963 17 1481 2927 1097 311 1613
5 1487 2969 173 701 2273 2801
1493 2957 11 1361 2663 1877 47
1451 317 2693 911 887 1373 2777
2213 1277 971 1997 2153 1667 131
2003 1697 761 2843 1307 821 977
281 2657 1523 197 1601 2087 2063
= > MC7 = 10409
911 1451 887 317 1373 2693 2777
2927 2963 1097 17 311 1481 1613
1997 2213 2153 1277 1667 971 131
173 5 701 1487 2273 2969 2801
2843 2003 1307 1697 821 761 977
1361 1493 2663 2957 1877 11 47
197 281 1601 2657 2087 1523 2063

The Magic Square shown at the left side above is composed out of:

  • One 3th order Simple Magic Corner Square with Magic Sum s3 = 3 * s1 / 7 (top/left)
  • One 4th order Associated Magic Corner Square with Magic Sum s4 = 4 * s1 / 7 (bottom/right)
  • Two Associated Magic Rectangles order 3 x 4 with s3 = 3 * s1 / 7 and s4 = 4 * s1 / 7

Based on this definition a routine can be developed to generate subject Composed Magic Squares (ref. Priem7e3).

Attachment 14.6.30 shows for miscellaneous Magic Sums the first occurring Prime Number Composed Magic Square.

Also (Associated) Bordered Magic Squares can be obtained by means of transformation of order 7 Composed Magic Squares as illustrated below:

MC7 = 10409
2963 17 1481 2927 1097 311 1613
5 1487 2969 173 701 2273 2801
1493 2957 11 1361 2663 1877 47
1451 317 2693 911 887 1373 2777
2213 1277 971 1997 2153 1667 131
2003 1697 761 2843 1307 821 977
281 2657 1523 197 1601 2087 2063
= > MC7 = 10409
911 887 1451 317 2693 1373 2777
1997 2153 2213 1277 971 1667 131
2927 1097 2963 17 1481 311 1613
173 701 5 1487 2969 2273 2801
1361 2663 1493 2957 11 1877 47
2843 1307 2003 1697 761 821 977
197 1601 281 2657 1523 2087 2063

It should be noted that the reversed transformations are not necessarily possible because of the bottom-left / top-right Main Diagonal.

14.5.18 Concentric Magic Squares (7 x 7)
        Crosswise Symmetric Border

Based on the equations defining order 7 Concentric Magic Squares with Crosswise Symmetric Border:

a(31) = 3 * s1/7 - a(32) - a(33)
a(26) =     s1/7 + a(31) - a(33)
a(25) =     s1/7

a(43) =     s1   - a(44) - a(45) - a(46) - a(47) - a(48) - a(49)
a(29) =     s1   - a(30) - a(34) - a(35) - a(31) - a(32) - a(33)
a(13) =    -s1/7 + a(14) + a(28) - a(34) + a(35) - a(48) + a(49)
a(10) =    -s1/7 + a(12) - a(45) + a(47) + a(26) - a(31) + a(33)
a( 9) = (24*s1/7 - a(11) - 2 * a(12) - 2 * a(14) - a(23) - a(28) - 2 * a(30) +
                         - 2 * a(35) - 2 * a(44) - a(46) - 2 * a(47) - 2*a(49) - a(26) - a(32) - 2*a(33))/2
a( 8) =     s1 - a(9) - a(10) - a(11) - a(12) - a(13) - a(14)

a(24) = 2*s1/7 - a(26)
a(19) = 2*s1/7 - a(31)
a(18) = 2*s1/7 - a(32)
a(17) = 2*s1/7 - a(33)

a(42) = 2*s1/7 - a(48)
a(41) = 2*s1/7 - a(49)
a(40) = 2*s1/7 - a(45)
a(39) = 2*s1/7 - a(46)
a(38) = 2*s1/7 - a(47)
a(37) = 2*s1/7 - a(43)
a(36) = 2*s1/7 - a(44)

a(27) = 2*s1/7 - a(28)
a(22) = 2*s1/7 - a(23)
a(21) = 2*s1/7 - a(34)
a(20) = 2*s1/7 - a(35)
a(16) = 2*s1/7 - a(29)
a(15) = 2*s1/7 - a(30)

a(7) = 2*s1/7 - a(13)
a(6) = 2*s1/7 - a(14)
a(5) = 2*s1/7 - a(10)
a(4) = 2*s1/7 - a(11)
a(3) = 2*s1/7 - a(12)
a(2) = 2*s1/7 - a( 8)
a(1) = 2*s1/7 - a( 9)

a routine can be written to generate subject Prime Number Concentric Magic Squares (ref. Priem7e18).

Attachment 14.5.18 shows Prime Number Concentric Magic Squares with Crosswise Symmetric Border for some of the occurring Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

14.5.19 Concentric Pan Magic Squares (7 x 7)
        Simple Magic Center Square

Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Simple Magic Center Square:

a(43) =      s1   - a(44) - a(45) - a(46) - a(47) - a(48) - a(49)
a(38) =  4 * s1/7 - a(39) - a(40) - a(46)
a(37) =      s1/7 - a(41) + a(46)
a(31) =  6 * s1/7 - a(32) - a(33) - a(39) - a(45) - a(47)
a(30) =  3 * s1/7 - a(34) - a(38) - a(40) + a(45) - a(46) + a(47)
a(28) =      s1   - a(34) - a(40) - a(42) - a(46) - a(48) - a(49)
a(27) =  6 * s1/7 - a(33) - a(34) - a(35) + a(38) - 2 * a(41) + a(46) - a(47) - a(49)
a(26) =  8 * s1/7 - a(32) - a(33) - a(34) - a(40) - a(41) - a(42) - a(48)
a(24) = -4 * s1/7 + a(33) + a(34) + a(39) + a(40) + a(41) + a(42) - a(44)
a(23) =           - a(27) + a(32) - a(39) + a(44) + a(48)
a(21) =     -s1/7 + a(34) + a(40) + a(41) - a(45)
a(20) = -3 * s1/7 - a(27) + a(40) + a(42) + a(46) + a(48) + a(49)
a(19) =     -s1/7 - a(31) + a(34) - a(38) - a(39) + 2 * a(41) + a(42) - a(46) + a(48) + a(49)
a(18) =  3 * s1/7 + a(38) + a(40) - a(43) - a(45) - a(47) - a(49)
a(17) =  9 * s1/7 - a(33) - a(34) - a(40) - 2 * a(41) - a(42) - a(48) - a(49)
a(16) =  5 * s1/7 + a(26) - a(35) - a(39) - a(40) - a(41) + a(43) - a(47) - a(49)
a(14) =  6 * s1/7 - a(35) - a(41) - a(44) - a(47) - a(49)
a(13) =  8 * s1/7 - a(34) - a(40) - a(41) - a(42) - a(46) - a(48) - a(49)
a(12) =  4 * s1/7 - a(33) + a(38) - a(41) - a(45) + a(46) - a(47) - a(49)
a(11) =  4 * s1/7 - a(32) - a(44) - a(48)
a(10) =      s1/7 + a(32) + a(33) - a(38) + a(41) - a(43) - a(46)
a( 9) = -5 * s1/7 + a(34) + a(40) + a(41) + a(42) + a(48) + a(49)
a(25) =      s1/7

a(1) = 2*s1/7 - a(49)
a(2) = 2*s1/7 - a(44)
a(3) = 2*s1/7 - a(45)

a(4) = 2*s1/7 - a(46)
a(5) = 2*s1/7 - a(47)
a(6) = 2*s1/7 - a(48)

a( 7) = 2*s1/7 - a(43)
a( 8) = 2*s1/7 - a(14)
a(15) = 2*s1/7 - a(21)

a(22) = 2*s1/7 - a(28)
a(29) = 2*s1/7 - a(35)
a(36) = 2*s1/7 - a(42)

a routine can be written to generate subject Prime Number Concentric Pan Magic Squares (ref. Priem7e19).

Attachment 14.5.19 shows Prime Number Concentric Pan Magic Squares for some of the occurring Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

14.5.20 Concentric Pan Magic Squares (7 x 7)
        Associated Center Square

Based on the equations defining order 7 Concentric Pan Magic Squares with order 5 Associated Center Square:

a(43) =       s1   - a(44) - a(45) - a(46) - a(47) - a(48) - a(49)
a(38) =   4 * s1/7 - a(39) - a(40) - a(46)
a(37) =       s1/7 - a(41) + a(46)
a(35) =   6 * s1/7 - a(41) - a(42) - a(47) - a(48) - a(49)
a(34) =       s1   - a(40) - 2 * a(41) - a(42) - a(48) - a(49)
a(33) =  10 * s1/7 - 2 * a(39) - 2 * a(40) - a(41) - a(45) - a(46) - a(47) - a(49)
a(32) =   2 * s1/7 + a(39) - a(44) - a(48)
a(31) =  -6 * s1/7 + 2 * a(40) + a(41) + a(44) + a(46) + a(48) + a(49)
a(30) =  -8 * s1/7 + a(39) + a(40) + 2 * a(41) + a(42) + a(45) + a(47) + a(48) + a(49)
a(28) =              2 * a(41) - a(46)
a(27) = -13 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + 2 * a(42) + a(45) + a(46) + a(47) + 2*a(48) + 2*a(49)
a(26) = -11 * s1/7 + a(39) + 2 * a(40) + 2 * a(41) + a(44) + a(45) + a(46) + a(47) + a(48) + 2*a(49)
a(21) =   6 * s1/7 - a(41) - a(42) - a(45) - a(48) - a(49)
a(14) =              a(42) - a(44) + a(48)
a(25) =       s1/7

a(1) = 2*s1/7 - a(49)
a(2) = 2*s1/7 - a(44)
a(3) = 2*s1/7 - a(45)
a(4) = 2*s1/7 - a(46)
a(5) = 2*s1/7 - a(47)
a(6) = 2*s1/7 - a(48)

a( 7) = 2*s1/7 - a(43)
a( 8) = 2*s1/7 - a(14)
a( 9) = 2*s1/7 - a(41)
a(10) = 2*s1/7 - a(40)
a(11) = 2*s1/7 - a(39)
a(12) = 2*s1/7 - a(38)

a(13) = 2*s1/7 - a(37)
a(15) = 2*s1/7 - a(21)
a(16) = 2*s1/7 - a(34)
a(17) = 2*s1/7 - a(33)
a(18) = 2*s1/7 - a(32)
a(19) = 2*s1/7 - a(31)

a(20) = 2*s1/7 - a(30)
a(22) = 2*s1/7 - a(28)
a(23) = 2*s1/7 - a(27)
a(24) = 2*s1/7 - a(26)
a(29) = 2*s1/7 - a(35)
a(36) = 2*s1/7 - a(42)

a routine can be written to generate subject Prime Number Concentric Pan Magic Squares (ref. Priem7e20).

Attachment 14.5.20 shows Prime Number Concentric Pan Magic Squares for some of the occurring Magic Sums.

Each square shown corresponds with numerous squares for the applicable Magic Sum and variable values {ai}.

14.5.21 Summary

The obtained results regarding the miscellaneous types of order 7 Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table:

Type

Characteristics

Subroutine

Results

-

-

-

-

Composed

Associated Crnr Sqrs and - Rectangles

Priem7e3

Attachment 14.6.30

Concentric

Crosswise Symmetric Border

Priem7e18

Attachment 14.5.18

Concentric

Pan Magic

Priem7e19

Attachment 14.5.19

Concentric

Pan Magic, Associated Center Square

Priem7e20

Attachment 14.5.20

-

-

-

-

Comparable routines as listed above, can be used to generate Prime Number Magic Squares of order 8, which will be described in following sections.


Vorige Pagina Volgende Pagina Index About the Author