|
24.0 Magic Squares, Higher Order, Composed
24.1 Introduction, Misc. Sub Squares (2)
In Section 9.9.2
Magic Squares of the 9th order could be constructed
based on a set of 9 Magic Squares of the 3th order,
each containing 9 non-consecutive integers, with corresponding Magic Sum.
Next sections show comparable sets of (Pan) Magic Squares, enabling the construction of
12th,
15th,
16th,
18th
and a few higher order Magic Squares.
24.2 Magic Squares (12 x 12)
For 12th order Magic Squares, following set of 16 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:
|
|
A1
|
|
A2
| 48 |
128 |
16 |
| 32 |
64 |
96 |
| 112 |
0 |
80 |
|
B
| 12 |
13 |
3 |
6 |
| 7 |
2 |
16 |
9 |
| 14 |
11 |
5 |
4 |
| 1 |
8 |
10 |
15 |
|
C
| 60 |
140 |
28 |
| 44 |
76 |
108 |
| 124 |
12 |
92 |
|
| 61 |
141 |
29 |
| 45 |
77 |
109 |
| 125 |
13 |
93 |
|
| 51 |
131 |
19 |
| 35 |
67 |
99 |
| 115 |
3 |
83 |
|
| 54 |
134 |
22 |
| 38 |
70 |
102 |
| 118 |
6 |
86 |
|
| 55 |
135 |
23 |
| 39 |
71 |
103 |
| 119 |
7 |
87 |
|
| 50 |
130 |
18 |
| 34 |
66 |
98 |
| 114 |
2 |
82 |
|
| 64 |
144 |
32 |
| 48 |
80 |
112 |
| 128 |
16 |
96 |
|
| 57 |
137 |
25 |
| 41 |
73 |
105 |
| 121 |
9 |
89 |
|
| 62 |
142 |
30 |
| 46 |
78 |
110 |
| 126 |
14 |
94 |
|
| 59 |
139 |
27 |
| 43 |
75 |
107 |
| 123 |
11 |
91 |
|
| 53 |
133 |
21 |
| 37 |
69 |
101 |
| 117 |
5 |
85 |
|
| 52 |
132 |
20 |
| 36 |
68 |
100 |
| 116 |
4 |
84 |
|
| 49 |
129 |
17 |
| 33 |
65 |
97 |
| 113 |
1 |
81 |
|
| 56 |
136 |
24 |
| 40 |
72 |
104 |
| 120 |
8 |
88 |
|
| 58 |
138 |
26 |
| 42 |
74 |
106 |
| 122 |
10 |
90 |
|
| 63 |
143 |
31 |
| 47 |
79 |
111 |
| 127 |
15 |
95 |
|
|
MC's
| 228 |
231 |
201 |
210 |
| 213 |
198 |
240 |
219 |
| 234 |
225 |
207 |
204 |
| 195 |
216 |
222 |
237 |
|
With 8 possible squares for each square Ci (i = 1 ... 16), the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
either 384 * 816 = 1,08 1017
for Pan Magic Square B;
or 7040 * 816 = 1,98 1018
for Simple Magic Square B.
It can be noticed that if B is Associated, the resulting square C will be Associated as well.
Alternatively, following set of 9 Magic Squares
- each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found:
|
|
A1
| 12 |
13 |
3 |
6 |
| 7 |
2 |
16 |
9 |
| 14 |
11 |
5 |
4 |
| 1 |
8 |
10 |
15 |
|
|
A2
| 99 |
108 |
18 |
45 |
| 54 |
9 |
135 |
72 |
| 117 |
90 |
36 |
27 |
| 0 |
63 |
81 |
126 |
|
|
B
|
C
| 103 |
112 |
22 |
49 |
| 58 |
13 |
139 |
76 |
| 121 |
94 |
40 |
31 |
| 4 |
67 |
85 |
130 |
|
| 108 |
117 |
27 |
54 |
| 63 |
18 |
144 |
81 |
| 126 |
99 |
45 |
36 |
| 9 |
72 |
90 |
135 |
|
| 101 |
110 |
20 |
47 |
| 56 |
11 |
137 |
74 |
| 119 |
92 |
38 |
29 |
| 2 |
65 |
83 |
128 |
|
| 102 |
111 |
21 |
48 |
| 57 |
12 |
138 |
75 |
| 120 |
93 |
39 |
30 |
| 3 |
66 |
84 |
129 |
|
| 104 |
113 |
23 |
50 |
| 59 |
14 |
140 |
77 |
| 122 |
95 |
41 |
32 |
| 5 |
68 |
86 |
131 |
|
| 106 |
115 |
25 |
52 |
| 61 |
16 |
142 |
79 |
| 124 |
97 |
43 |
34 |
| 7 |
70 |
88 |
133 |
|
| 107 |
116 |
26 |
53 |
| 62 |
17 |
143 |
80 |
| 125 |
98 |
44 |
35 |
| 8 |
71 |
89 |
134 |
|
| 100 |
109 |
19 |
46 |
| 55 |
10 |
136 |
73 |
| 118 |
91 |
37 |
28 |
| 1 |
64 |
82 |
127 |
|
| 105 |
114 |
24 |
51 |
| 60 |
15 |
141 |
78 |
| 123 |
96 |
42 |
33 |
| 6 |
69 |
87 |
132 |
|
|
MC's
| 286 |
306 |
278 |
| 282 |
290 |
298 |
| 302 |
274 |
294 |
|
With 8 possible squares for square B, the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
either 8 * 3849 = 1,45 1024
for Pan Magic Squares Ci (i = 1 ... 9);
or 8 * 70409 = 3,40 1035
for Simple Magic Squares Ci (i = 1 ... 9).
It can be noticed that if Ci is Associated, the resulting square C will be Associated as well.
24.3 Magic Squares (15 x 15)
For 15th order Magic Squares,
following set of 25 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:
B
| 12 |
6 |
5 |
24 |
18 |
| 4 |
23 |
17 |
11 |
10 |
| 16 |
15 |
9 |
3 |
22 |
| 8 |
2 |
21 |
20 |
14 |
| 25 |
19 |
13 |
7 |
1 |
|
A1
|
A2
| 75 |
200 |
25 |
| 50 |
100 |
150 |
| 175 |
0 |
125 |
|
MC's
| 336 |
318 |
315 |
372 |
354 |
| 312 |
369 |
351 |
333 |
330 |
| 348 |
345 |
327 |
309 |
366 |
| 324 |
306 |
363 |
360 |
342 |
| 375 |
357 |
339 |
321 |
303 |
|
C
| 87 |
212 |
37 |
| 62 |
112 |
162 |
| 187 |
12 |
137 |
|
| 81 |
206 |
31 |
| 56 |
106 |
156 |
| 181 |
6 |
131 |
|
| 80 |
205 |
30 |
| 55 |
105 |
155 |
| 180 |
5 |
130 |
|
| 99 |
224 |
49 |
| 74 |
124 |
174 |
| 199 |
24 |
149 |
|
| 93 |
218 |
43 |
| 68 |
118 |
168 |
| 193 |
18 |
143 |
|
| 79 |
204 |
29 |
| 54 |
104 |
154 |
| 179 |
4 |
129 |
|
| 98 |
223 |
48 |
| 73 |
123 |
173 |
| 198 |
23 |
148 |
|
| 92 |
217 |
42 |
| 67 |
117 |
167 |
| 192 |
17 |
142 |
|
| 86 |
211 |
36 |
| 61 |
111 |
161 |
| 186 |
11 |
136 |
|
| 85 |
210 |
35 |
| 60 |
110 |
160 |
| 185 |
10 |
135 |
|
| 91 |
216 |
41 |
| 66 |
116 |
166 |
| 191 |
16 |
141 |
|
| 90 |
215 |
40 |
| 65 |
115 |
165 |
| 190 |
15 |
140 |
|
| 84 |
209 |
34 |
| 59 |
109 |
159 |
| 184 |
9 |
134 |
|
| 78 |
203 |
28 |
| 53 |
103 |
153 |
| 178 |
3 |
128 |
|
| 97 |
222 |
47 |
| 72 |
122 |
172 |
| 197 |
22 |
147 |
|
| 83 |
208 |
33 |
| 58 |
108 |
158 |
| 183 |
8 |
133 |
|
| 77 |
202 |
27 |
| 52 |
102 |
152 |
| 177 |
2 |
127 |
|
| 96 |
221 |
46 |
| 71 |
121 |
171 |
| 196 |
21 |
146 |
|
| 95 |
220 |
45 |
| 70 |
120 |
170 |
| 195 |
20 |
145 |
|
| 89 |
214 |
39 |
| 64 |
114 |
164 |
| 189 |
14 |
139 |
|
| 100 |
225 |
50 |
| 75 |
125 |
175 |
| 200 |
25 |
150 |
|
| 94 |
219 |
44 |
| 69 |
119 |
169 |
| 194 |
19 |
144 |
|
| 88 |
213 |
38 |
| 63 |
113 |
163 |
| 188 |
13 |
138 |
|
| 82 |
207 |
32 |
| 57 |
107 |
157 |
| 182 |
7 |
132 |
|
| 76 |
201 |
26 |
| 51 |
101 |
151 |
| 176 |
1 |
126 |
|
With 8 possible squares for each square Ci (i = 1 ... 25),
and 28800 possible squares for Pan Magic Square B,
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
28800 * 825 = 1,09 1027.
Att 24.6.01 Sht. 1, provides some additional examples of order 15 Magic Squares, composed of 25 order 3 Sub Squares for miscellaneous types Square B.
For enumeration base reference is made to Section 5.8.
Alternatively, following set of 9 Magic Squares - each containing 25 non-consecutive integers - with corresponding Magic Sum, can be found:
|
B
|
A1
| 12 |
6 |
5 |
24 |
18 |
| 4 |
23 |
17 |
11 |
10 |
| 16 |
15 |
9 |
3 |
22 |
| 8 |
2 |
21 |
20 |
14 |
| 25 |
19 |
13 |
7 |
1 |
|
A2
| 99 |
45 |
36 |
207 |
153 |
| 27 |
198 |
144 |
90 |
81 |
| 135 |
126 |
72 |
18 |
189 |
| 63 |
9 |
180 |
171 |
117 |
| 216 |
162 |
108 |
54 |
0 |
|
MC's
| 560 |
585 |
550 |
| 555 |
565 |
575 |
| 580 |
545 |
570 |
|
C
| 103 |
49 |
40 |
211 |
157 |
| 31 |
202 |
148 |
94 |
85 |
| 139 |
130 |
76 |
22 |
193 |
| 67 |
13 |
184 |
175 |
121 |
| 220 |
166 |
112 |
58 |
4 |
|
| 108 |
54 |
45 |
216 |
162 |
| 36 |
207 |
153 |
99 |
90 |
| 144 |
135 |
81 |
27 |
198 |
| 72 |
18 |
189 |
180 |
126 |
| 225 |
171 |
117 |
63 |
9 |
|
| 101 |
47 |
38 |
209 |
155 |
| 29 |
200 |
146 |
92 |
83 |
| 137 |
128 |
74 |
20 |
191 |
| 65 |
11 |
182 |
173 |
119 |
| 218 |
164 |
110 |
56 |
2 |
|
| 102 |
48 |
39 |
210 |
156 |
| 30 |
201 |
147 |
93 |
84 |
| 138 |
129 |
75 |
21 |
192 |
| 66 |
12 |
183 |
174 |
120 |
| 219 |
165 |
111 |
57 |
3 |
|
| 104 |
50 |
41 |
212 |
158 |
| 32 |
203 |
149 |
95 |
86 |
| 140 |
131 |
77 |
23 |
194 |
| 68 |
14 |
185 |
176 |
122 |
| 221 |
167 |
113 |
59 |
5 |
|
| 106 |
52 |
43 |
214 |
160 |
| 34 |
205 |
151 |
97 |
88 |
| 142 |
133 |
79 |
25 |
196 |
| 70 |
16 |
187 |
178 |
124 |
| 223 |
169 |
115 |
61 |
7 |
|
| 107 |
53 |
44 |
215 |
161 |
| 35 |
206 |
152 |
98 |
89 |
| 143 |
134 |
80 |
26 |
197 |
| 71 |
17 |
188 |
179 |
125 |
| 224 |
170 |
116 |
62 |
8 |
|
| 100 |
46 |
37 |
208 |
154 |
| 28 |
199 |
145 |
91 |
82 |
| 136 |
127 |
73 |
19 |
190 |
| 64 |
10 |
181 |
172 |
118 |
| 217 |
163 |
109 |
55 |
1 |
|
| 105 |
51 |
42 |
213 |
159 |
| 33 |
204 |
150 |
96 |
87 |
| 141 |
132 |
78 |
24 |
195 |
| 69 |
15 |
186 |
177 |
123 |
| 222 |
168 |
114 |
60 |
6 |
|
With 8 possible squares for square B
and 28800 possible squares for each Pan Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
8 * 288009 = 1,09 1041.
Att 24.6.01 Sht. 2, provides some additional examples of order 15 Magic Squares, composed of 9 order 5 Sub Squares for miscellaneous types Square C.
For enumeration base reference is made to Section 5.8.
24.4 Magic Squares (16 x 16)
For 16th order Magic Squares, following set of 16 (Pan) Magic Squares - each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found:
A1
| 5 |
4 |
14 |
11 |
| 10 |
15 |
1 |
8 |
| 3 |
6 |
12 |
13 |
| 16 |
9 |
7 |
2 |
|
A2
| 64 |
48 |
208 |
160 |
| 144 |
224 |
0 |
112 |
| 32 |
80 |
176 |
192 |
| 240 |
128 |
96 |
16 |
|
B
| 12 |
13 |
3 |
6 |
| 7 |
2 |
16 |
9 |
| 14 |
11 |
5 |
4 |
| 1 |
8 |
10 |
15 |
|
MC's
| 528 |
532 |
492 |
504 |
| 508 |
488 |
544 |
516 |
| 536 |
524 |
500 |
496 |
| 484 |
512 |
520 |
540 |
|
C
| 76 |
60 |
220 |
172 |
| 156 |
236 |
12 |
124 |
| 44 |
92 |
188 |
204 |
| 252 |
140 |
108 |
28 |
|
| 77 |
61 |
221 |
173 |
| 157 |
237 |
13 |
125 |
| 45 |
93 |
189 |
205 |
| 253 |
141 |
109 |
29 |
|
| 67 |
51 |
211 |
163 |
| 147 |
227 |
3 |
115 |
| 35 |
83 |
179 |
195 |
| 243 |
131 |
99 |
19 |
|
| 70 |
54 |
214 |
166 |
| 150 |
230 |
6 |
118 |
| 38 |
86 |
182 |
198 |
| 246 |
134 |
102 |
22 |
|
| 71 |
55 |
215 |
167 |
| 151 |
231 |
7 |
119 |
| 39 |
87 |
183 |
199 |
| 247 |
135 |
103 |
23 |
|
| 66 |
50 |
210 |
162 |
| 146 |
226 |
2 |
114 |
| 34 |
82 |
178 |
194 |
| 242 |
130 |
98 |
18 |
|
| 80 |
64 |
224 |
176 |
| 160 |
240 |
16 |
128 |
| 48 |
96 |
192 |
208 |
| 256 |
144 |
112 |
32 |
|
| 73 |
57 |
217 |
169 |
| 153 |
233 |
9 |
121 |
| 41 |
89 |
185 |
201 |
| 249 |
137 |
105 |
25 |
|
| 78 |
62 |
222 |
174 |
| 158 |
238 |
14 |
126 |
| 46 |
94 |
190 |
206 |
| 254 |
142 |
110 |
30 |
|
| 75 |
59 |
219 |
171 |
| 155 |
235 |
11 |
123 |
| 43 |
91 |
187 |
203 |
| 251 |
139 |
107 |
27 |
|
| 69 |
53 |
213 |
165 |
| 149 |
229 |
5 |
117 |
| 37 |
85 |
181 |
197 |
| 245 |
133 |
101 |
21 |
|
| 68 |
52 |
212 |
164 |
| 148 |
228 |
4 |
116 |
| 36 |
84 |
180 |
196 |
| 244 |
132 |
100 |
20 |
|
| 65 |
49 |
209 |
161 |
| 145 |
225 |
1 |
113 |
| 33 |
81 |
177 |
193 |
| 241 |
129 |
97 |
17 |
|
| 72 |
56 |
216 |
168 |
| 152 |
232 |
8 |
120 |
| 40 |
88 |
184 |
200 |
| 248 |
136 |
104 |
24 |
|
| 74 |
58 |
218 |
170 |
| 154 |
234 |
10 |
122 |
| 42 |
90 |
186 |
202 |
| 250 |
138 |
106 |
26 |
|
| 79 |
63 |
223 |
175 |
| 159 |
239 |
15 |
127 |
| 47 |
95 |
191 |
207 |
| 255 |
143 |
111 |
31 |
|
The resulting number of Magic Squares of the 16th order with Magic Sum s16 = 2056 can be determined for following 4 Cases:
Square B Pan Magic,
Squares Ci (i = 1 ... 16)
Pan Magic:
384 * 38416 =
8,58 1043
Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Pan Magic:
7040 * 38416 =
1,57 1045
Square B Pan Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
384 * 704016 =
1,40 1064
Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
7040 * 704016 =
2,56 1065
If B and Ci are Pan Magic, the resulting square C will be Pan Magic as well.
If B and Ci are Associated, the resulting square C will be Associated as well.
24.5 Magic Squares (18 x 18)
For 18th order Magic Squares,
following set of 36 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:
B
| 26 |
35 |
1 |
19 |
6 |
24 |
| 17 |
8 |
28 |
10 |
33 |
15 |
| 30 |
12 |
14 |
23 |
25 |
7 |
| 3 |
21 |
5 |
32 |
34 |
16 |
| 31 |
22 |
27 |
9 |
2 |
20 |
| 4 |
13 |
36 |
18 |
11 |
29 |
|
A1
|
A2
| 108 |
288 |
36 |
| 72 |
144 |
216 |
| 252 |
0 |
180 |
|
MC's
| 510 |
537 |
435 |
489 |
450 |
504 |
| 483 |
456 |
516 |
462 |
531 |
477 |
| 522 |
468 |
474 |
501 |
507 |
453 |
| 441 |
495 |
447 |
528 |
534 |
480 |
| 525 |
498 |
513 |
459 |
438 |
492 |
| 444 |
471 |
540 |
486 |
465 |
519 |
|
C
| 134 |
314 |
62 |
| 98 |
170 |
242 |
| 278 |
26 |
206 |
|
| 143 |
323 |
71 |
| 107 |
179 |
251 |
| 287 |
35 |
215 |
|
| 109 |
289 |
37 |
| 73 |
145 |
217 |
| 253 |
1 |
181 |
|
| 127 |
307 |
55 |
| 91 |
163 |
235 |
| 271 |
19 |
199 |
|
| 114 |
294 |
42 |
| 78 |
150 |
222 |
| 258 |
6 |
186 |
|
| 132 |
312 |
60 |
| 96 |
168 |
240 |
| 276 |
24 |
204 |
|
| 125 |
305 |
53 |
| 89 |
161 |
233 |
| 269 |
17 |
197 |
|
| 116 |
296 |
44 |
| 80 |
152 |
224 |
| 260 |
8 |
188 |
|
| 136 |
316 |
64 |
| 100 |
172 |
244 |
| 280 |
28 |
208 |
|
| 118 |
298 |
46 |
| 82 |
154 |
226 |
| 262 |
10 |
190 |
|
| 141 |
321 |
69 |
| 105 |
177 |
249 |
| 285 |
33 |
213 |
|
| 123 |
303 |
51 |
| 87 |
159 |
231 |
| 267 |
15 |
195 |
|
| 138 |
318 |
66 |
| 102 |
174 |
246 |
| 282 |
30 |
210 |
|
| 120 |
300 |
48 |
| 84 |
156 |
228 |
| 264 |
12 |
192 |
|
| 122 |
302 |
50 |
| 86 |
158 |
230 |
| 266 |
14 |
194 |
|
| 131 |
311 |
59 |
| 95 |
167 |
239 |
| 275 |
23 |
203 |
|
| 133 |
313 |
61 |
| 97 |
169 |
241 |
| 277 |
25 |
205 |
|
| 115 |
295 |
43 |
| 79 |
151 |
223 |
| 259 |
7 |
187 |
|
| 111 |
291 |
39 |
| 75 |
147 |
219 |
| 255 |
3 |
183 |
|
| 129 |
309 |
57 |
| 93 |
165 |
237 |
| 273 |
21 |
201 |
|
| 113 |
293 |
41 |
| 77 |
149 |
221 |
| 257 |
5 |
185 |
|
| 140 |
320 |
68 |
| 104 |
176 |
248 |
| 284 |
32 |
212 |
|
| 142 |
322 |
70 |
| 106 |
178 |
250 |
| 286 |
34 |
214 |
|
| 124 |
304 |
52 |
| 88 |
160 |
232 |
| 268 |
16 |
196 |
|
| 139 |
319 |
67 |
| 103 |
175 |
247 |
| 283 |
31 |
211 |
|
| 130 |
310 |
58 |
| 94 |
166 |
238 |
| 274 |
22 |
202 |
|
| 135 |
315 |
63 |
| 99 |
171 |
243 |
| 279 |
27 |
207 |
|
| 117 |
297 |
45 |
| 81 |
153 |
225 |
| 261 |
9 |
189 |
|
| 110 |
290 |
38 |
| 74 |
146 |
218 |
| 254 |
2 |
182 |
|
| 128 |
308 |
56 |
| 92 |
164 |
236 |
| 272 |
20 |
200 |
|
| 112 |
292 |
40 |
| 76 |
148 |
220 |
| 256 |
4 |
184 |
|
| 121 |
301 |
49 |
| 85 |
157 |
229 |
| 265 |
13 |
193 |
|
| 144 |
324 |
72 |
| 108 |
180 |
252 |
| 288 |
36 |
216 |
|
| 126 |
306 |
54 |
| 90 |
162 |
234 |
| 270 |
18 |
198 |
|
| 119 |
299 |
47 |
| 83 |
155 |
227 |
| 263 |
11 |
191 |
|
| 137 |
317 |
65 |
| 101 |
173 |
245 |
| 281 |
29 |
209 |
|
With 8 possible squares for each square Ci (i = 1 ... 36),
and 1.740.800 possible squares (Medjig Solutions) for Magic Square B
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
1.740.800 * 836 = 6,58 1028.
Alternatively, following set of 9 Magic Squares - each containing 36 non-consecutive integers - with corresponding Magic Sum, can be found:
|
B
|
A1
| 26 |
35 |
1 |
19 |
6 |
24 |
| 17 |
8 |
28 |
10 |
33 |
15 |
| 30 |
12 |
14 |
23 |
25 |
7 |
| 3 |
21 |
5 |
32 |
34 |
16 |
| 31 |
22 |
27 |
9 |
2 |
20 |
| 4 |
13 |
36 |
18 |
11 |
29 |
|
A2
| 225 |
306 |
0 |
162 |
45 |
207 |
| 144 |
63 |
243 |
81 |
288 |
126 |
| 261 |
99 |
117 |
198 |
216 |
54 |
| 18 |
180 |
36 |
279 |
297 |
135 |
| 270 |
189 |
234 |
72 |
9 |
171 |
| 27 |
108 |
315 |
153 |
90 |
252 |
|
MC's
| 969 |
999 |
957 |
| 963 |
975 |
987 |
| 993 |
951 |
981 |
|
C
| 229 |
310 |
4 |
166 |
49 |
211 |
| 148 |
67 |
247 |
85 |
292 |
130 |
| 265 |
103 |
121 |
202 |
220 |
58 |
| 22 |
184 |
40 |
283 |
301 |
139 |
| 274 |
193 |
238 |
76 |
13 |
175 |
| 31 |
112 |
319 |
157 |
94 |
256 |
|
| 234 |
315 |
9 |
171 |
54 |
216 |
| 153 |
72 |
252 |
90 |
297 |
135 |
| 270 |
108 |
126 |
207 |
225 |
63 |
| 27 |
189 |
45 |
288 |
306 |
144 |
| 279 |
198 |
243 |
81 |
18 |
180 |
| 36 |
117 |
324 |
162 |
99 |
261 |
|
| 227 |
308 |
2 |
164 |
47 |
209 |
| 146 |
65 |
245 |
83 |
290 |
128 |
| 263 |
101 |
119 |
200 |
218 |
56 |
| 20 |
182 |
38 |
281 |
299 |
137 |
| 272 |
191 |
236 |
74 |
11 |
173 |
| 29 |
110 |
317 |
155 |
92 |
254 |
|
| 228 |
309 |
3 |
165 |
48 |
210 |
| 147 |
66 |
246 |
84 |
291 |
129 |
| 264 |
102 |
120 |
201 |
219 |
57 |
| 21 |
183 |
39 |
282 |
300 |
138 |
| 273 |
192 |
237 |
75 |
12 |
174 |
| 30 |
111 |
318 |
156 |
93 |
255 |
|
| 230 |
311 |
5 |
167 |
50 |
212 |
| 149 |
68 |
248 |
86 |
293 |
131 |
| 266 |
104 |
122 |
203 |
221 |
59 |
| 23 |
185 |
41 |
284 |
302 |
140 |
| 275 |
194 |
239 |
77 |
14 |
176 |
| 32 |
113 |
320 |
158 |
95 |
257 |
|
| 232 |
313 |
7 |
169 |
52 |
214 |
| 151 |
70 |
250 |
88 |
295 |
133 |
| 268 |
106 |
124 |
205 |
223 |
61 |
| 25 |
187 |
43 |
286 |
304 |
142 |
| 277 |
196 |
241 |
79 |
16 |
178 |
| 34 |
115 |
322 |
160 |
97 |
259 |
|
| 233 |
314 |
8 |
170 |
53 |
215 |
| 152 |
71 |
251 |
89 |
296 |
134 |
| 269 |
107 |
125 |
206 |
224 |
62 |
| 26 |
188 |
44 |
287 |
305 |
143 |
| 278 |
197 |
242 |
80 |
17 |
179 |
| 35 |
116 |
323 |
161 |
98 |
260 |
|
| 226 |
307 |
1 |
163 |
46 |
208 |
| 145 |
64 |
244 |
82 |
289 |
127 |
| 262 |
100 |
118 |
199 |
217 |
55 |
| 19 |
181 |
37 |
280 |
298 |
136 |
| 271 |
190 |
235 |
73 |
10 |
172 |
| 28 |
109 |
316 |
154 |
91 |
253 |
|
| 231 |
312 |
6 |
168 |
51 |
213 |
| 150 |
69 |
249 |
87 |
294 |
132 |
| 267 |
105 |
123 |
204 |
222 |
60 |
| 24 |
186 |
42 |
285 |
303 |
141 |
| 276 |
195 |
240 |
78 |
15 |
177 |
| 33 |
114 |
321 |
159 |
96 |
258 |
|
With 8 possible squares for square B
and 1.740.800 possible squares (Medjig Solutions) for each Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
8 * 1.740.8009 = 1,17 1057.
24.6 Magic Squares, Misc. Orders
Magic Squares composed out of Sub Squares with different Magic Sums are also referred to as Inlaid Magic Squares.
A few more examples of miscellaneous types of Composed Magic Squares are summarized in following table:
|