|
The right square can be completed with a 14 x 14 center cross based on the consecutive integers 73 ... 124:
MC = 1379
| 4 |
5 |
191 |
194 |
| 189 |
196 |
2 |
7 |
| 6 |
3 |
193 |
192 |
| 195 |
190 |
8 |
1 |
|
| 12 |
13 |
81 |
116 |
183 |
186 |
| 181 |
188 |
82 |
115 |
10 |
15 |
| 14 |
11 |
114 |
83 |
185 |
184 |
| 187 |
182 |
113 |
84 |
16 |
9 |
|
| 20 |
21 |
175 |
178 |
| 173 |
180 |
18 |
23 |
| 22 |
19 |
177 |
176 |
| 179 |
174 |
24 |
17 |
|
| 28 |
29 |
167 |
170 |
| 165 |
172 |
26 |
31 |
| 73 |
74 |
122 |
121 |
| 124 |
123 |
75 |
76 |
| 30 |
27 |
169 |
168 |
| 171 |
166 |
32 |
25 |
|
| 36 |
37 |
102 |
95 |
159 |
162 |
| 157 |
164 |
97 |
100 |
34 |
39 |
| 91 |
105 |
98 |
101 |
107 |
89 |
| 106 |
92 |
96 |
99 |
90 |
108 |
| 38 |
35 |
94 |
103 |
161 |
160 |
| 163 |
158 |
104 |
93 |
40 |
33 |
|
| 44 |
45 |
151 |
154 |
| 149 |
156 |
42 |
47 |
| 120 |
119 |
79 |
80 |
| 77 |
78 |
118 |
117 |
| 46 |
43 |
153 |
152 |
| 155 |
150 |
48 |
41 |
|
| 52 |
53 |
143 |
146 |
| 141 |
148 |
50 |
55 |
| 54 |
51 |
145 |
144 |
| 147 |
142 |
56 |
49 |
|
| 60 |
61 |
112 |
85 |
135 |
138 |
| 133 |
140 |
111 |
86 |
58 |
63 |
| 62 |
59 |
87 |
110 |
137 |
136 |
| 139 |
134 |
88 |
109 |
64 |
57 |
|
| 68 |
69 |
127 |
130 |
| 125 |
132 |
66 |
71 |
| 70 |
67 |
129 |
128 |
| 131 |
126 |
72 |
65 |
|
After adding 26 to all elements of the left square, it can be completed with a 14 x 14 center cross based on the integers 1 ... 26 and 171 to 196:
MC = 1379
| 30 |
31 |
165 |
168 |
| 163 |
170 |
28 |
33 |
| 32 |
29 |
167 |
166 |
| 169 |
164 |
34 |
27 |
|
| 38 |
39 |
195 |
2 |
157 |
160 |
| 155 |
162 |
6 |
191 |
36 |
41 |
| 40 |
37 |
8 |
189 |
159 |
158 |
| 161 |
156 |
188 |
9 |
42 |
35 |
|
| 46 |
47 |
149 |
152 |
| 147 |
154 |
44 |
49 |
| 48 |
45 |
151 |
150 |
| 153 |
148 |
50 |
43 |
|
| 54 |
55 |
141 |
144 |
| 139 |
146 |
52 |
57 |
| 194 |
192 |
190 |
19 |
| 3 |
5 |
7 |
178 |
| 56 |
53 |
143 |
142 |
| 145 |
140 |
58 |
51 |
|
| 62 |
63 |
11 |
186 |
133 |
136 |
| 131 |
138 |
12 |
185 |
60 |
65 |
| 20 |
176 |
1 |
4 |
175 |
174 |
| 177 |
21 |
193 |
196 |
22 |
23 |
| 64 |
61 |
184 |
13 |
135 |
134 |
| 137 |
132 |
183 |
14 |
66 |
59 |
|
| 70 |
71 |
125 |
128 |
| 123 |
130 |
68 |
73 |
| 173 |
25 |
26 |
10 |
| 24 |
172 |
171 |
187 |
| 72 |
69 |
127 |
126 |
| 129 |
124 |
74 |
67 |
|
| 78 |
79 |
117 |
120 |
| 115 |
122 |
76 |
81 |
| 80 |
77 |
119 |
118 |
| 121 |
116 |
82 |
75 |
|
| 86 |
87 |
182 |
15 |
109 |
112 |
| 107 |
114 |
181 |
16 |
84 |
89 |
| 88 |
85 |
17 |
180 |
111 |
110 |
| 113 |
108 |
18 |
179 |
90 |
83 |
|
| 94 |
95 |
101 |
104 |
| 99 |
106 |
92 |
97 |
| 96 |
93 |
103 |
102 |
| 105 |
100 |
98 |
91 |
|
Each center cross corresponds with (12!) * (12!) = 2,3 1017 center crosses,
which can be obtained by permutation of the horizontal and vertical pairs.
Both squares can be transformed into a Bordered Magic Square as shown below:
MC = 1379
| 98 |
73 |
74 |
122 |
121 |
91 |
105 |
| 81 |
4 |
5 |
191 |
194 |
12 |
13 |
| 82 |
189 |
196 |
2 |
7 |
181 |
188 |
| 114 |
6 |
3 |
193 |
192 |
14 |
11 |
| 113 |
195 |
190 |
8 |
1 |
187 |
182 |
| 102 |
28 |
29 |
167 |
170 |
36 |
37 |
| 97 |
165 |
172 |
26 |
31 |
157 |
164 |
|
| 107 |
89 |
120 |
119 |
79 |
80 |
101 |
| 183 |
186 |
20 |
21 |
175 |
178 |
116 |
| 10 |
15 |
173 |
180 |
18 |
23 |
115 |
| 185 |
184 |
22 |
19 |
177 |
176 |
83 |
| 16 |
9 |
179 |
174 |
24 |
17 |
84 |
| 159 |
162 |
44 |
45 |
151 |
154 |
95 |
| 34 |
39 |
149 |
156 |
42 |
47 |
100 |
|
| 94 |
30 |
27 |
169 |
168 |
38 |
35 |
| 104 |
171 |
166 |
32 |
25 |
163 |
158 |
| 112 |
52 |
53 |
143 |
146 |
60 |
61 |
| 111 |
141 |
148 |
50 |
55 |
133 |
140 |
| 87 |
54 |
51 |
145 |
144 |
62 |
59 |
| 88 |
147 |
142 |
56 |
49 |
139 |
134 |
| 96 |
124 |
123 |
75 |
76 |
106 |
92 |
|
| 161 |
160 |
46 |
43 |
153 |
152 |
103 |
| 40 |
33 |
155 |
150 |
48 |
41 |
93 |
| 135 |
138 |
68 |
69 |
127 |
130 |
85 |
| 58 |
63 |
125 |
132 |
66 |
71 |
86 |
| 137 |
136 |
70 |
67 |
129 |
128 |
110 |
| 64 |
57 |
131 |
126 |
72 |
65 |
109 |
| 90 |
108 |
77 |
78 |
118 |
117 |
99 |
|
MC = 1379
| 1 |
194 |
192 |
190 |
19 |
20 |
176 |
| 195 |
30 |
31 |
165 |
168 |
38 |
39 |
| 6 |
163 |
170 |
28 |
33 |
155 |
162 |
| 8 |
32 |
29 |
167 |
166 |
40 |
37 |
| 188 |
169 |
164 |
34 |
27 |
161 |
156 |
| 11 |
54 |
55 |
141 |
144 |
62 |
63 |
| 12 |
139 |
146 |
52 |
57 |
131 |
138 |
|
| 175 |
174 |
173 |
25 |
26 |
10 |
4 |
| 157 |
160 |
46 |
47 |
149 |
152 |
2 |
| 36 |
41 |
147 |
154 |
44 |
49 |
191 |
| 159 |
158 |
48 |
45 |
151 |
150 |
189 |
| 42 |
35 |
153 |
148 |
50 |
43 |
9 |
| 133 |
136 |
70 |
71 |
125 |
128 |
186 |
| 60 |
65 |
123 |
130 |
68 |
73 |
185 |
|
| 184 |
56 |
53 |
143 |
142 |
64 |
61 |
| 183 |
145 |
140 |
58 |
51 |
137 |
132 |
| 182 |
78 |
79 |
117 |
120 |
86 |
87 |
| 181 |
115 |
122 |
76 |
81 |
107 |
114 |
| 17 |
80 |
77 |
119 |
118 |
88 |
85 |
| 18 |
121 |
116 |
82 |
75 |
113 |
108 |
| 193 |
3 |
5 |
7 |
178 |
177 |
21 |
|
| 135 |
134 |
72 |
69 |
127 |
126 |
13 |
| 66 |
59 |
129 |
124 |
74 |
67 |
14 |
| 109 |
112 |
94 |
95 |
101 |
104 |
15 |
| 84 |
89 |
99 |
106 |
92 |
97 |
16 |
| 111 |
110 |
96 |
93 |
103 |
102 |
180 |
| 90 |
83 |
105 |
100 |
98 |
91 |
179 |
| 22 |
23 |
24 |
172 |
171 |
187 |
196 |
|
Each border corresponds with (12!) * (12!) = 2,3 1017 borders,
which can be obtained by permutation of the horizontal and vertical pairs.
Each 14 x 14 Magic Square shown above corresponds with 9! * 3849 = 6,6 1028, for each border or center cross.
Comparable 14 x 14 Composed Magic Squares can be constructed based on:
-
the center cross based on the integers 1 ... 26 and 171 to 196 and
-
the order 6 Sub Squares of the Composed Magic Squares as discussed in Section 22.5
of which a few examples are shown in Attachment 27.2.
29.3 Magic Squares (18 x 18)
After adding 34 to all elements of the normal Composed Magic Square (16 x 16, MC = 2056) shown in Section 22.3,
it can be completed with an 18 x 18 center cross based on the integers 1 ... 34 and 291 to 324:
MC = 2925
| 38 |
39 |
285 |
288 |
| 283 |
290 |
36 |
41 |
| 40 |
37 |
287 |
286 |
| 289 |
284 |
42 |
35 |
|
| 46 |
47 |
277 |
280 |
| 275 |
282 |
44 |
49 |
| 48 |
45 |
279 |
278 |
| 281 |
276 |
50 |
43 |
|
| 300 |
25 |
| 24 |
301 |
| 302 |
23 |
| 22 |
303 |
|
| 54 |
55 |
269 |
272 |
| 267 |
274 |
52 |
57 |
| 56 |
53 |
271 |
270 |
| 273 |
268 |
58 |
51 |
|
| 62 |
63 |
261 |
264 |
| 259 |
266 |
60 |
65 |
| 64 |
61 |
263 |
262 |
| 265 |
260 |
66 |
59 |
|
| 70 |
71 |
253 |
256 |
| 251 |
258 |
68 |
73 |
| 72 |
69 |
255 |
254 |
| 257 |
252 |
74 |
67 |
|
| 78 |
79 |
245 |
248 |
| 243 |
250 |
76 |
81 |
| 80 |
77 |
247 |
246 |
| 249 |
244 |
82 |
75 |
|
| 304 |
21 |
| 20 |
305 |
| 306 |
19 |
| 9 |
316 |
|
| 86 |
87 |
237 |
240 |
| 235 |
242 |
84 |
89 |
| 88 |
85 |
239 |
238 |
| 241 |
236 |
90 |
83 |
|
| 94 |
95 |
229 |
232 |
| 227 |
234 |
92 |
97 |
| 96 |
93 |
231 |
230 |
| 233 |
228 |
98 |
91 |
|
|
|
|
|
| 34 |
292 |
32 |
294 |
| 291 |
33 |
293 |
31 |
|
| 30 |
296 |
28 |
298 |
| 295 |
29 |
297 |
27 |
|
| 102 |
103 |
221 |
224 |
| 219 |
226 |
100 |
105 |
| 104 |
101 |
223 |
222 |
| 225 |
220 |
106 |
99 |
|
| 110 |
111 |
213 |
216 |
| 211 |
218 |
108 |
113 |
| 112 |
109 |
215 |
214 |
| 217 |
212 |
114 |
107 |
|
| 324 |
1 |
| 16 |
309 |
| 310 |
15 |
| 14 |
311 |
|
| 118 |
119 |
205 |
208 |
| 203 |
210 |
116 |
121 |
| 120 |
117 |
207 |
206 |
| 209 |
204 |
122 |
115 |
|
| 126 |
127 |
197 |
200 |
| 195 |
202 |
124 |
129 |
| 128 |
125 |
199 |
198 |
| 201 |
196 |
130 |
123 |
|
| 134 |
135 |
189 |
192 |
| 187 |
194 |
132 |
137 |
| 136 |
133 |
191 |
190 |
| 193 |
188 |
138 |
131 |
|
| 142 |
143 |
181 |
184 |
| 179 |
186 |
140 |
145 |
| 144 |
141 |
183 |
182 |
| 185 |
180 |
146 |
139 |
|
| 312 |
13 |
| 12 |
313 |
| 314 |
11 |
| 10 |
315 |
|
| 150 |
151 |
173 |
176 |
| 171 |
178 |
148 |
153 |
| 152 |
149 |
175 |
174 |
| 177 |
172 |
154 |
147 |
|
| 158 |
159 |
165 |
168 |
| 163 |
170 |
156 |
161 |
| 160 |
157 |
167 |
166 |
| 169 |
164 |
162 |
155 |
|
For n = 18 a non normal Magic Square (16 x 16, MC = 2600) can be constructed, which can be completed with an 18 x 18 center cross based on the consecutive integers 129 ... 196:
MC = 2925
| 4 |
5 |
319 |
322 |
| 317 |
324 |
2 |
7 |
| 6 |
3 |
321 |
320 |
| 323 |
318 |
8 |
1 |
|
| 12 |
13 |
311 |
314 |
| 309 |
316 |
10 |
15 |
| 14 |
11 |
313 |
312 |
| 315 |
310 |
16 |
9 |
|
| 172 |
153 |
| 152 |
173 |
| 174 |
151 |
| 150 |
175 |
|
| 20 |
21 |
303 |
306 |
| 301 |
308 |
18 |
23 |
| 22 |
19 |
305 |
304 |
| 307 |
302 |
24 |
17 |
|
| 28 |
29 |
295 |
298 |
| 293 |
300 |
26 |
31 |
| 30 |
27 |
297 |
296 |
| 299 |
294 |
32 |
25 |
|
| 36 |
37 |
287 |
290 |
| 285 |
292 |
34 |
39 |
| 38 |
35 |
289 |
288 |
| 291 |
286 |
40 |
33 |
|
| 44 |
45 |
279 |
282 |
| 277 |
284 |
42 |
47 |
| 46 |
43 |
281 |
280 |
| 283 |
278 |
48 |
41 |
|
| 176 |
149 |
| 148 |
177 |
| 178 |
147 |
| 137 |
188 |
|
| 52 |
53 |
271 |
274 |
| 269 |
276 |
50 |
55 |
| 54 |
51 |
273 |
272 |
| 275 |
270 |
56 |
49 |
|
| 60 |
61 |
263 |
266 |
| 261 |
268 |
58 |
63 |
| 62 |
59 |
265 |
264 |
| 267 |
262 |
64 |
57 |
|
| 130 |
194 |
132 |
192 |
| 195 |
131 |
193 |
133 |
|
| 134 |
190 |
136 |
154 |
| 191 |
135 |
189 |
171 |
|
|
| 162 |
164 |
160 |
166 |
| 163 |
161 |
165 |
159 |
|
| 158 |
168 |
156 |
170 |
| 167 |
157 |
169 |
155 |
|
| 68 |
69 |
255 |
258 |
| 253 |
260 |
66 |
71 |
| 70 |
67 |
257 |
256 |
| 259 |
254 |
72 |
65 |
|
| 76 |
77 |
247 |
250 |
| 245 |
252 |
74 |
79 |
| 78 |
75 |
249 |
248 |
| 251 |
246 |
80 |
73 |
|
| 196 |
129 |
| 144 |
181 |
| 182 |
143 |
| 142 |
183 |
|
| 84 |
85 |
239 |
242 |
| 237 |
244 |
82 |
87 |
| 86 |
83 |
241 |
240 |
| 243 |
238 |
88 |
81 |
|
| 92 |
93 |
231 |
234 |
| 229 |
236 |
90 |
95 |
| 94 |
91 |
233 |
232 |
| 235 |
230 |
96 |
89 |
|
| 100 |
101 |
223 |
226 |
| 221 |
228 |
98 |
103 |
| 102 |
99 |
225 |
224 |
| 227 |
222 |
104 |
97 |
|
| 108 |
109 |
215 |
218 |
| 213 |
220 |
106 |
111 |
| 110 |
107 |
217 |
216 |
| 219 |
214 |
112 |
105 |
|
| 184 |
141 |
| 140 |
185 |
| 186 |
139 |
| 138 |
187 |
|
| 116 |
117 |
207 |
210 |
| 205 |
212 |
114 |
119 |
| 118 |
115 |
209 |
208 |
| 211 |
206 |
120 |
113 |
|
| 124 |
125 |
199 |
202 |
| 197 |
204 |
122 |
127 |
| 126 |
123 |
201 |
200 |
| 203 |
198 |
128 |
121 |
|
Each center cross corresponds with (16!) * (16!) = 4,4 1026 center crosses,
which can be obtained by permutation of the horizontal and vertical pairs.
Both squares can be transformed into a Bordered Magic Square as shown below:
MC = 2925
| 308 |
2 |
322 |
4 |
320 |
6 |
318 |
8 |
26 |
| 300 |
38 |
39 |
285 |
288 |
46 |
47 |
277 |
280 |
| 24 |
283 |
290 |
36 |
41 |
275 |
282 |
44 |
49 |
| 302 |
40 |
37 |
287 |
286 |
48 |
45 |
279 |
278 |
| 22 |
289 |
284 |
42 |
35 |
281 |
276 |
50 |
43 |
| 304 |
70 |
71 |
253 |
256 |
78 |
79 |
245 |
248 |
| 20 |
251 |
258 |
68 |
73 |
243 |
250 |
76 |
81 |
| 306 |
72 |
69 |
255 |
254 |
80 |
77 |
247 |
246 |
| 9 |
257 |
252 |
74 |
67 |
249 |
244 |
82 |
75 |
|
| 34 |
292 |
32 |
294 |
30 |
296 |
28 |
298 |
307 |
| 54 |
55 |
269 |
272 |
62 |
63 |
261 |
264 |
25 |
| 267 |
274 |
52 |
57 |
259 |
266 |
60 |
65 |
301 |
| 56 |
53 |
271 |
270 |
64 |
61 |
263 |
262 |
23 |
| 273 |
268 |
58 |
51 |
265 |
260 |
66 |
59 |
303 |
| 86 |
87 |
237 |
240 |
94 |
95 |
229 |
232 |
21 |
| 235 |
242 |
84 |
89 |
227 |
234 |
92 |
97 |
305 |
| 88 |
85 |
239 |
238 |
96 |
93 |
231 |
230 |
19 |
| 241 |
236 |
90 |
83 |
233 |
228 |
98 |
91 |
316 |
|
| 324 |
102 |
103 |
221 |
224 |
110 |
111 |
213 |
216 |
| 16 |
219 |
226 |
100 |
105 |
211 |
218 |
108 |
113 |
| 310 |
104 |
101 |
223 |
222 |
112 |
109 |
215 |
214 |
| 14 |
225 |
220 |
106 |
99 |
217 |
212 |
114 |
107 |
| 312 |
134 |
135 |
189 |
192 |
142 |
143 |
181 |
184 |
| 12 |
187 |
194 |
132 |
137 |
179 |
186 |
140 |
145 |
| 314 |
136 |
133 |
191 |
190 |
144 |
141 |
183 |
182 |
| 10 |
193 |
188 |
138 |
131 |
185 |
180 |
146 |
139 |
| 18 |
323 |
3 |
321 |
5 |
319 |
7 |
317 |
299 |
|
| 118 |
119 |
205 |
208 |
126 |
127 |
197 |
200 |
1 |
| 203 |
210 |
116 |
121 |
195 |
202 |
124 |
129 |
309 |
| 120 |
117 |
207 |
206 |
128 |
125 |
199 |
198 |
15 |
| 209 |
204 |
122 |
115 |
201 |
196 |
130 |
123 |
311 |
| 150 |
151 |
173 |
176 |
158 |
159 |
165 |
168 |
13 |
| 171 |
178 |
148 |
153 |
163 |
170 |
156 |
161 |
313 |
| 152 |
149 |
175 |
174 |
160 |
157 |
167 |
166 |
11 |
| 177 |
172 |
154 |
147 |
169 |
164 |
162 |
155 |
315 |
| 291 |
33 |
293 |
31 |
295 |
29 |
297 |
27 |
17 |
|
MC = 2925
| 180 |
130 |
194 |
132 |
192 |
134 |
190 |
136 |
154 |
| 172 |
4 |
5 |
319 |
322 |
12 |
13 |
311 |
314 |
| 152 |
317 |
324 |
2 |
7 |
309 |
316 |
10 |
15 |
| 174 |
6 |
3 |
321 |
320 |
14 |
11 |
313 |
312 |
| 150 |
323 |
318 |
8 |
1 |
315 |
310 |
16 |
9 |
| 176 |
36 |
37 |
287 |
290 |
44 |
45 |
279 |
282 |
| 148 |
285 |
292 |
34 |
39 |
277 |
284 |
42 |
47 |
| 178 |
38 |
35 |
289 |
288 |
46 |
43 |
281 |
280 |
| 137 |
291 |
286 |
40 |
33 |
283 |
278 |
48 |
41 |
|
| 162 |
164 |
160 |
166 |
158 |
168 |
156 |
170 |
179 |
| 20 |
21 |
303 |
306 |
28 |
29 |
295 |
298 |
153 |
| 301 |
308 |
18 |
23 |
293 |
300 |
26 |
31 |
173 |
| 22 |
19 |
305 |
304 |
30 |
27 |
297 |
296 |
151 |
| 307 |
302 |
24 |
17 |
299 |
294 |
32 |
25 |
175 |
| 52 |
53 |
271 |
274 |
60 |
61 |
263 |
266 |
149 |
| 269 |
276 |
50 |
55 |
261 |
268 |
58 |
63 |
177 |
| 54 |
51 |
273 |
272 |
62 |
59 |
265 |
264 |
147 |
| 275 |
270 |
56 |
49 |
267 |
262 |
64 |
57 |
188 |
|
| 196 |
68 |
69 |
255 |
258 |
76 |
77 |
247 |
250 |
| 144 |
253 |
260 |
66 |
71 |
245 |
252 |
74 |
79 |
| 182 |
70 |
67 |
257 |
256 |
78 |
75 |
249 |
248 |
| 142 |
259 |
254 |
72 |
65 |
251 |
246 |
80 |
73 |
| 184 |
100 |
101 |
223 |
226 |
108 |
109 |
215 |
218 |
| 140 |
221 |
228 |
98 |
103 |
213 |
220 |
106 |
111 |
| 186 |
102 |
99 |
225 |
224 |
110 |
107 |
217 |
216 |
| 138 |
227 |
222 |
104 |
97 |
219 |
214 |
112 |
105 |
| 146 |
195 |
131 |
193 |
133 |
191 |
135 |
189 |
171 |
|
| 84 |
85 |
239 |
242 |
92 |
93 |
231 |
234 |
129 |
| 237 |
244 |
82 |
87 |
229 |
236 |
90 |
95 |
181 |
| 86 |
83 |
241 |
240 |
94 |
91 |
233 |
232 |
143 |
| 243 |
238 |
88 |
81 |
235 |
230 |
96 |
89 |
183 |
| 116 |
117 |
207 |
210 |
124 |
125 |
199 |
202 |
141 |
| 205 |
212 |
114 |
119 |
197 |
204 |
122 |
127 |
185 |
| 118 |
115 |
209 |
208 |
126 |
123 |
201 |
200 |
139 |
| 211 |
206 |
120 |
113 |
203 |
198 |
128 |
121 |
187 |
| 163 |
161 |
165 |
159 |
167 |
157 |
169 |
155 |
145 |
|
Each border corresponds with (16!) * (16!) = 4,4 1026 borders,
which can be obtained by permutation of the horizontal and vertical pairs.
Each 18 x 18 Magic Square shown above corresponds with 16! * 38416 = 4,7 1054, for each border or center cross.
29.4 Magic Squares (22 x 22)
After adding 42 to all elements of the normal Composed Magic Square (20 x 20, MC = 4010) shown in Section 22.4,
it can be completed with a 18 x 18 center cross based on the integers 1 ... 42 and 443 to 484:
MC = 5335
| 46 |
47 |
437 |
440 |
54 |
55 |
429 |
432 |
62 |
63 |
452 |
| 435 |
442 |
44 |
49 |
427 |
434 |
52 |
57 |
419 |
426 |
34 |
| 48 |
45 |
439 |
438 |
56 |
53 |
431 |
430 |
64 |
61 |
450 |
| 441 |
436 |
50 |
43 |
433 |
428 |
58 |
51 |
425 |
420 |
36 |
| 86 |
87 |
397 |
400 |
94 |
95 |
389 |
392 |
102 |
103 |
448 |
| 395 |
402 |
84 |
89 |
387 |
394 |
92 |
97 |
379 |
386 |
38 |
| 88 |
85 |
399 |
398 |
96 |
93 |
391 |
390 |
104 |
101 |
446 |
| 401 |
396 |
90 |
83 |
393 |
388 |
98 |
91 |
385 |
380 |
40 |
| 126 |
127 |
357 |
360 |
134 |
135 |
349 |
352 |
142 |
143 |
444 |
| 355 |
362 |
124 |
129 |
347 |
354 |
132 |
137 |
339 |
346 |
42 |
| 31 |
455 |
29 |
457 |
27 |
459 |
25 |
461 |
23 |
474 |
463 |
|
| 33 |
421 |
424 |
70 |
71 |
413 |
416 |
78 |
79 |
405 |
408 |
| 451 |
60 |
65 |
411 |
418 |
68 |
73 |
403 |
410 |
76 |
81 |
| 35 |
423 |
422 |
72 |
69 |
415 |
414 |
80 |
77 |
407 |
406 |
| 449 |
66 |
59 |
417 |
412 |
74 |
67 |
409 |
404 |
82 |
75 |
| 37 |
381 |
384 |
110 |
111 |
373 |
376 |
118 |
119 |
365 |
368 |
| 447 |
100 |
105 |
371 |
378 |
108 |
113 |
363 |
370 |
116 |
121 |
| 39 |
383 |
382 |
112 |
109 |
375 |
374 |
120 |
117 |
367 |
366 |
| 445 |
106 |
99 |
377 |
372 |
114 |
107 |
369 |
364 |
122 |
115 |
| 41 |
341 |
344 |
150 |
151 |
333 |
336 |
158 |
159 |
325 |
328 |
| 443 |
140 |
145 |
331 |
338 |
148 |
153 |
323 |
330 |
156 |
161 |
| 21 |
1 |
465 |
19 |
467 |
17 |
469 |
15 |
471 |
13 |
473 |
|
| 454 |
30 |
456 |
28 |
458 |
26 |
460 |
24 |
462 |
11 |
464 |
| 128 |
125 |
359 |
358 |
136 |
133 |
351 |
350 |
144 |
141 |
32 |
| 361 |
356 |
130 |
123 |
353 |
348 |
138 |
131 |
345 |
340 |
10 |
| 166 |
167 |
317 |
320 |
174 |
175 |
309 |
312 |
182 |
183 |
476 |
| 315 |
322 |
164 |
169 |
307 |
314 |
172 |
177 |
299 |
306 |
8 |
| 168 |
165 |
319 |
318 |
176 |
173 |
311 |
310 |
184 |
181 |
478 |
| 321 |
316 |
170 |
163 |
313 |
308 |
178 |
171 |
305 |
300 |
6 |
| 206 |
207 |
277 |
280 |
214 |
215 |
269 |
272 |
222 |
223 |
480 |
| 275 |
282 |
204 |
209 |
267 |
274 |
212 |
217 |
259 |
266 |
4 |
| 208 |
205 |
279 |
278 |
216 |
213 |
271 |
270 |
224 |
221 |
482 |
| 281 |
276 |
210 |
203 |
273 |
268 |
218 |
211 |
265 |
260 |
2 |
|
| 22 |
484 |
20 |
466 |
18 |
468 |
16 |
470 |
14 |
472 |
12 |
| 453 |
343 |
342 |
152 |
149 |
335 |
334 |
160 |
157 |
327 |
326 |
| 475 |
146 |
139 |
337 |
332 |
154 |
147 |
329 |
324 |
162 |
155 |
| 9 |
301 |
304 |
190 |
191 |
293 |
296 |
198 |
199 |
285 |
288 |
| 477 |
180 |
185 |
291 |
298 |
188 |
193 |
283 |
290 |
196 |
201 |
| 7 |
303 |
302 |
192 |
189 |
295 |
294 |
200 |
197 |
287 |
286 |
| 479 |
186 |
179 |
297 |
292 |
194 |
187 |
289 |
284 |
202 |
195 |
| 5 |
261 |
264 |
230 |
231 |
253 |
256 |
238 |
239 |
245 |
248 |
| 481 |
220 |
225 |
251 |
258 |
228 |
233 |
243 |
250 |
236 |
241 |
| 3 |
263 |
262 |
232 |
229 |
255 |
254 |
240 |
237 |
247 |
246 |
| 483 |
226 |
219 |
257 |
252 |
234 |
227 |
249 |
244 |
242 |
235 |
|
For n = 22 a non normal Magic Square (20 x 20, MC = 4850) can be constructed, which can be completed with a 22 x 22 center cross based on the consecutive integers 201 ... 284:
MC = 5335
| 4 |
5 |
479 |
482 |
12 |
13 |
471 |
474 |
20 |
21 |
252 |
| 477 |
484 |
2 |
7 |
469 |
476 |
10 |
15 |
461 |
468 |
234 |
| 6 |
3 |
481 |
480 |
14 |
11 |
473 |
472 |
22 |
19 |
250 |
| 483 |
478 |
8 |
1 |
475 |
470 |
16 |
9 |
467 |
462 |
236 |
| 44 |
45 |
439 |
442 |
52 |
53 |
431 |
434 |
60 |
61 |
248 |
| 437 |
444 |
42 |
47 |
429 |
436 |
50 |
55 |
421 |
428 |
238 |
| 46 |
43 |
441 |
440 |
54 |
51 |
433 |
432 |
62 |
59 |
246 |
| 443 |
438 |
48 |
41 |
435 |
430 |
56 |
49 |
427 |
422 |
240 |
| 84 |
85 |
399 |
402 |
92 |
93 |
391 |
394 |
100 |
101 |
244 |
| 397 |
404 |
82 |
87 |
389 |
396 |
90 |
95 |
381 |
388 |
242 |
| 231 |
255 |
229 |
257 |
227 |
259 |
225 |
261 |
223 |
274 |
263 |
|
| 233 |
463 |
466 |
28 |
29 |
455 |
458 |
36 |
37 |
447 |
450 |
| 251 |
18 |
23 |
453 |
460 |
26 |
31 |
445 |
452 |
34 |
39 |
| 235 |
465 |
464 |
30 |
27 |
457 |
456 |
38 |
35 |
449 |
448 |
| 249 |
24 |
17 |
459 |
454 |
32 |
25 |
451 |
446 |
40 |
33 |
| 237 |
423 |
426 |
68 |
69 |
415 |
418 |
76 |
77 |
407 |
410 |
| 247 |
58 |
63 |
413 |
420 |
66 |
71 |
405 |
412 |
74 |
79 |
| 239 |
425 |
424 |
70 |
67 |
417 |
416 |
78 |
75 |
409 |
408 |
| 245 |
64 |
57 |
419 |
414 |
72 |
65 |
411 |
406 |
80 |
73 |
| 241 |
383 |
386 |
108 |
109 |
375 |
378 |
116 |
117 |
367 |
370 |
| 243 |
98 |
103 |
373 |
380 |
106 |
111 |
365 |
372 |
114 |
119 |
| 221 |
201 |
265 |
219 |
267 |
217 |
269 |
215 |
271 |
213 |
273 |
|
| 254 |
230 |
256 |
228 |
258 |
226 |
260 |
224 |
262 |
211 |
264 |
| 86 |
83 |
401 |
400 |
94 |
91 |
393 |
392 |
102 |
99 |
232 |
| 403 |
398 |
88 |
81 |
395 |
390 |
96 |
89 |
387 |
382 |
210 |
| 124 |
125 |
359 |
362 |
132 |
133 |
351 |
354 |
140 |
141 |
276 |
| 357 |
364 |
122 |
127 |
349 |
356 |
130 |
135 |
341 |
348 |
208 |
| 126 |
123 |
361 |
360 |
134 |
131 |
353 |
352 |
142 |
139 |
278 |
| 363 |
358 |
128 |
121 |
355 |
350 |
136 |
129 |
347 |
342 |
206 |
| 164 |
165 |
319 |
322 |
172 |
173 |
311 |
314 |
180 |
181 |
280 |
| 317 |
324 |
162 |
167 |
309 |
316 |
170 |
175 |
301 |
308 |
204 |
| 166 |
163 |
321 |
320 |
174 |
171 |
313 |
312 |
182 |
179 |
282 |
| 323 |
318 |
168 |
161 |
315 |
310 |
176 |
169 |
307 |
302 |
202 |
|
| 222 |
284 |
220 |
266 |
218 |
268 |
216 |
270 |
214 |
272 |
212 |
| 253 |
385 |
384 |
110 |
107 |
377 |
376 |
118 |
115 |
369 |
368 |
| 275 |
104 |
97 |
379 |
374 |
112 |
105 |
371 |
366 |
120 |
113 |
| 209 |
343 |
346 |
148 |
149 |
335 |
338 |
156 |
157 |
327 |
330 |
| 277 |
138 |
143 |
333 |
340 |
146 |
151 |
325 |
332 |
154 |
159 |
| 207 |
345 |
344 |
150 |
147 |
337 |
336 |
158 |
155 |
329 |
328 |
| 279 |
144 |
137 |
339 |
334 |
152 |
145 |
331 |
326 |
160 |
153 |
| 205 |
303 |
306 |
188 |
189 |
295 |
298 |
196 |
197 |
287 |
290 |
| 281 |
178 |
183 |
293 |
300 |
186 |
191 |
285 |
292 |
194 |
199 |
| 203 |
305 |
304 |
190 |
187 |
297 |
296 |
198 |
195 |
289 |
288 |
| 283 |
184 |
177 |
299 |
294 |
192 |
185 |
291 |
286 |
200 |
193 |
|
Each center cross corresponds with (20!) * (20!) = 5,9 1036 center crosses,
which can be obtained by permutation of the horizontal and vertical pairs.
Both squares can be transformed into a Bordered Magic Square as shown below:
MC = 5335
| 463 |
31 |
455 |
29 |
457 |
27 |
459 |
25 |
461 |
23 |
474 |
| 452 |
46 |
47 |
437 |
440 |
54 |
55 |
429 |
432 |
62 |
63 |
| 34 |
435 |
442 |
44 |
49 |
427 |
434 |
52 |
57 |
419 |
426 |
| 450 |
48 |
45 |
439 |
438 |
56 |
53 |
431 |
430 |
64 |
61 |
| 36 |
441 |
436 |
50 |
43 |
433 |
428 |
58 |
51 |
425 |
420 |
| 448 |
86 |
87 |
397 |
400 |
94 |
95 |
389 |
392 |
102 |
103 |
| 38 |
395 |
402 |
84 |
89 |
387 |
394 |
92 |
97 |
379 |
386 |
| 446 |
88 |
85 |
399 |
398 |
96 |
93 |
391 |
390 |
104 |
101 |
| 40 |
401 |
396 |
90 |
83 |
393 |
388 |
98 |
91 |
385 |
380 |
| 444 |
126 |
127 |
357 |
360 |
134 |
135 |
349 |
352 |
142 |
143 |
| 42 |
355 |
362 |
124 |
129 |
347 |
354 |
132 |
137 |
339 |
346 |
|
| 1 |
465 |
19 |
467 |
17 |
469 |
15 |
471 |
13 |
473 |
21 |
| 421 |
424 |
70 |
71 |
413 |
416 |
78 |
79 |
405 |
408 |
33 |
| 60 |
65 |
411 |
418 |
68 |
73 |
403 |
410 |
76 |
81 |
451 |
| 423 |
422 |
72 |
69 |
415 |
414 |
80 |
77 |
407 |
406 |
35 |
| 66 |
59 |
417 |
412 |
74 |
67 |
409 |
404 |
82 |
75 |
449 |
| 381 |
384 |
110 |
111 |
373 |
376 |
118 |
119 |
365 |
368 |
37 |
| 100 |
105 |
371 |
378 |
108 |
113 |
363 |
370 |
116 |
121 |
447 |
| 383 |
382 |
112 |
109 |
375 |
374 |
120 |
117 |
367 |
366 |
39 |
| 106 |
99 |
377 |
372 |
114 |
107 |
369 |
364 |
122 |
115 |
445 |
| 341 |
344 |
150 |
151 |
333 |
336 |
158 |
159 |
325 |
328 |
41 |
| 140 |
145 |
331 |
338 |
148 |
153 |
323 |
330 |
156 |
161 |
443 |
|
| 32 |
128 |
125 |
359 |
358 |
136 |
133 |
351 |
350 |
144 |
141 |
| 10 |
361 |
356 |
130 |
123 |
353 |
348 |
138 |
131 |
345 |
340 |
| 476 |
166 |
167 |
317 |
320 |
174 |
175 |
309 |
312 |
182 |
183 |
| 8 |
315 |
322 |
164 |
169 |
307 |
314 |
172 |
177 |
299 |
306 |
| 478 |
168 |
165 |
319 |
318 |
176 |
173 |
311 |
310 |
184 |
181 |
| 6 |
321 |
316 |
170 |
163 |
313 |
308 |
178 |
171 |
305 |
300 |
| 480 |
206 |
207 |
277 |
280 |
214 |
215 |
269 |
272 |
222 |
223 |
| 4 |
275 |
282 |
204 |
209 |
267 |
274 |
212 |
217 |
259 |
266 |
| 482 |
208 |
205 |
279 |
278 |
216 |
213 |
271 |
270 |
224 |
221 |
| 2 |
281 |
276 |
210 |
203 |
273 |
268 |
218 |
211 |
265 |
260 |
| 464 |
454 |
30 |
456 |
28 |
458 |
26 |
460 |
24 |
462 |
11 |
|
| 343 |
342 |
152 |
149 |
335 |
334 |
160 |
157 |
327 |
326 |
453 |
| 146 |
139 |
337 |
332 |
154 |
147 |
329 |
324 |
162 |
155 |
475 |
| 301 |
304 |
190 |
191 |
293 |
296 |
198 |
199 |
285 |
288 |
9 |
| 180 |
185 |
291 |
298 |
188 |
193 |
283 |
290 |
196 |
201 |
477 |
| 303 |
302 |
192 |
189 |
295 |
294 |
200 |
197 |
287 |
286 |
7 |
| 186 |
179 |
297 |
292 |
194 |
187 |
289 |
284 |
202 |
195 |
479 |
| 261 |
264 |
230 |
231 |
253 |
256 |
238 |
239 |
245 |
248 |
5 |
| 220 |
225 |
251 |
258 |
228 |
233 |
243 |
250 |
236 |
241 |
481 |
| 263 |
262 |
232 |
229 |
255 |
254 |
240 |
237 |
247 |
246 |
3 |
| 226 |
219 |
257 |
252 |
234 |
227 |
249 |
244 |
242 |
235 |
483 |
| 484 |
20 |
466 |
18 |
468 |
16 |
470 |
14 |
472 |
12 |
22 |
|
MC = 5335
| 263 |
231 |
255 |
229 |
257 |
227 |
259 |
225 |
261 |
223 |
274 |
| 252 |
4 |
5 |
479 |
482 |
12 |
13 |
471 |
474 |
20 |
21 |
| 234 |
477 |
484 |
2 |
7 |
469 |
476 |
10 |
15 |
461 |
468 |
| 250 |
6 |
3 |
481 |
480 |
14 |
11 |
473 |
472 |
22 |
19 |
| 236 |
483 |
478 |
8 |
1 |
475 |
470 |
16 |
9 |
467 |
462 |
| 248 |
44 |
45 |
439 |
442 |
52 |
53 |
431 |
434 |
60 |
61 |
| 238 |
437 |
444 |
42 |
47 |
429 |
436 |
50 |
55 |
421 |
428 |
| 246 |
46 |
43 |
441 |
440 |
54 |
51 |
433 |
432 |
62 |
59 |
| 240 |
443 |
438 |
48 |
41 |
435 |
430 |
56 |
49 |
427 |
422 |
| 244 |
84 |
85 |
399 |
402 |
92 |
93 |
391 |
394 |
100 |
101 |
| 242 |
397 |
404 |
82 |
87 |
389 |
396 |
90 |
95 |
381 |
388 |
|
| 201 |
265 |
219 |
267 |
217 |
269 |
215 |
271 |
213 |
273 |
221 |
| 463 |
466 |
28 |
29 |
455 |
458 |
36 |
37 |
447 |
450 |
233 |
| 18 |
23 |
453 |
460 |
26 |
31 |
445 |
452 |
34 |
39 |
251 |
| 465 |
464 |
30 |
27 |
457 |
456 |
38 |
35 |
449 |
448 |
235 |
| 24 |
17 |
459 |
454 |
32 |
25 |
451 |
446 |
40 |
33 |
249 |
| 423 |
426 |
68 |
69 |
415 |
418 |
76 |
77 |
407 |
410 |
237 |
| 58 |
63 |
413 |
420 |
66 |
71 |
405 |
412 |
74 |
79 |
247 |
| 425 |
424 |
70 |
67 |
417 |
416 |
78 |
75 |
409 |
408 |
239 |
| 64 |
57 |
419 |
414 |
72 |
65 |
411 |
406 |
80 |
73 |
245 |
| 383 |
386 |
108 |
109 |
375 |
378 |
116 |
117 |
367 |
370 |
241 |
| 98 |
103 |
373 |
380 |
106 |
111 |
365 |
372 |
114 |
119 |
243 |
|
| 232 |
86 |
83 |
401 |
400 |
94 |
91 |
393 |
392 |
102 |
99 |
| 210 |
403 |
398 |
88 |
81 |
395 |
390 |
96 |
89 |
387 |
382 |
| 276 |
124 |
125 |
359 |
362 |
132 |
133 |
351 |
354 |
140 |
141 |
| 208 |
357 |
364 |
122 |
127 |
349 |
356 |
130 |
135 |
341 |
348 |
| 278 |
126 |
123 |
361 |
360 |
134 |
131 |
353 |
352 |
142 |
139 |
| 206 |
363 |
358 |
128 |
121 |
355 |
350 |
136 |
129 |
347 |
342 |
| 280 |
164 |
165 |
319 |
322 |
172 |
173 |
311 |
314 |
180 |
181 |
| 204 |
317 |
324 |
162 |
167 |
309 |
316 |
170 |
175 |
301 |
308 |
| 282 |
166 |
163 |
321 |
320 |
174 |
171 |
313 |
312 |
182 |
179 |
| 202 |
323 |
318 |
168 |
161 |
315 |
310 |
176 |
169 |
307 |
302 |
| 264 |
254 |
230 |
256 |
228 |
258 |
226 |
260 |
224 |
262 |
211 |
|
| 385 |
384 |
110 |
107 |
377 |
376 |
118 |
115 |
369 |
368 |
253 |
| 104 |
97 |
379 |
374 |
112 |
105 |
371 |
366 |
120 |
113 |
275 |
| 343 |
346 |
148 |
149 |
335 |
338 |
156 |
157 |
327 |
330 |
209 |
| 138 |
143 |
333 |
340 |
146 |
151 |
325 |
332 |
154 |
159 |
277 |
| 345 |
344 |
150 |
147 |
337 |
336 |
158 |
155 |
329 |
328 |
207 |
| 144 |
137 |
339 |
334 |
152 |
145 |
331 |
326 |
160 |
153 |
279 |
| 303 |
306 |
188 |
189 |
295 |
298 |
196 |
197 |
287 |
290 |
205 |
| 178 |
183 |
293 |
300 |
186 |
191 |
285 |
292 |
194 |
199 |
281 |
| 305 |
304 |
190 |
187 |
297 |
296 |
198 |
195 |
289 |
288 |
203 |
| 184 |
177 |
299 |
294 |
192 |
185 |
291 |
286 |
200 |
193 |
283 |
| 284 |
220 |
266 |
218 |
268 |
216 |
270 |
214 |
272 |
212 |
222 |
|
Each border corresponds with (20!) * (20!) = 5,9 1036 borders,
which can be obtained by permutation of the horizontal and vertical pairs.
Each 22 x 22 Magic Square shown above corresponds with 25! * 38425 = 6,3 1089, for each border or center cross.
|